数据驱动的机器学习,用于抗震分析中的多灾害脆性面

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mojtaba Harati, John W. van de Lindt
{"title":"数据驱动的机器学习,用于抗震分析中的多灾害脆性面","authors":"Mojtaba Harati, John W. van de Lindt","doi":"10.1111/mice.13356","DOIUrl":null,"url":null,"abstract":"Offshore earthquakes and subsequent tsunamis pose significant risks to many coastal populations worldwide. This paper introduces a data‐driven machine learning model that synthesizes accurate 3D earthquake–tsunami fragility surfaces from randomly selected 2D fragility curves. The integration of physics‐based simulations enhances the model's reliability for these specific hazards, making it a valuable tool for multi‐hazard analysis in earthquake–tsunami contexts. Additionally, by shifting 2D fragility curves to represent retrofitted structural systems, the model can generate earthquake–tsunami fragility surfaces for community‐level mitigation studies. While the model is demonstrated for earthquake–tsunami scenarios, its methodology architecture has the potential to contribute to other multi‐hazard situations for the initial conditions in multi‐hazard community resilience analysis.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"53 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data‐driven machine learning for multi‐hazard fragility surfaces in seismic resilience analysis\",\"authors\":\"Mojtaba Harati, John W. van de Lindt\",\"doi\":\"10.1111/mice.13356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offshore earthquakes and subsequent tsunamis pose significant risks to many coastal populations worldwide. This paper introduces a data‐driven machine learning model that synthesizes accurate 3D earthquake–tsunami fragility surfaces from randomly selected 2D fragility curves. The integration of physics‐based simulations enhances the model's reliability for these specific hazards, making it a valuable tool for multi‐hazard analysis in earthquake–tsunami contexts. Additionally, by shifting 2D fragility curves to represent retrofitted structural systems, the model can generate earthquake–tsunami fragility surfaces for community‐level mitigation studies. While the model is demonstrated for earthquake–tsunami scenarios, its methodology architecture has the potential to contribute to other multi‐hazard situations for the initial conditions in multi‐hazard community resilience analysis.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13356\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13356","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

近海地震及其引发的海啸给全球许多沿海居民带来了巨大风险。本文介绍了一种数据驱动的机器学习模型,该模型可从随机选择的二维脆性曲线中合成精确的三维地震-海啸脆性曲面。基于物理的模拟集成增强了模型对这些特定灾害的可靠性,使其成为地震海啸背景下进行多重灾害分析的重要工具。此外,通过移动二维脆性曲线来表示改造后的结构系统,该模型可生成地震-海啸脆性面,用于社区层面的减灾研究。虽然该模型针对地震-海啸场景进行了演示,但其方法架构有可能为其他多灾种情况下的多灾种社区复原力分析初始条件做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data‐driven machine learning for multi‐hazard fragility surfaces in seismic resilience analysis
Offshore earthquakes and subsequent tsunamis pose significant risks to many coastal populations worldwide. This paper introduces a data‐driven machine learning model that synthesizes accurate 3D earthquake–tsunami fragility surfaces from randomly selected 2D fragility curves. The integration of physics‐based simulations enhances the model's reliability for these specific hazards, making it a valuable tool for multi‐hazard analysis in earthquake–tsunami contexts. Additionally, by shifting 2D fragility curves to represent retrofitted structural systems, the model can generate earthquake–tsunami fragility surfaces for community‐level mitigation studies. While the model is demonstrated for earthquake–tsunami scenarios, its methodology architecture has the potential to contribute to other multi‐hazard situations for the initial conditions in multi‐hazard community resilience analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信