用于三维重建中间接照明的误差模型和简明时态网络

Yuchong Chen;Pengcheng Yao;Rui Gao;Wei Zhang;Shaoyan Gai;Jian Yu;Feipeng Da
{"title":"用于三维重建中间接照明的误差模型和简明时态网络","authors":"Yuchong Chen;Pengcheng Yao;Rui Gao;Wei Zhang;Shaoyan Gai;Jian Yu;Feipeng Da","doi":"10.1109/TIP.2024.3472502","DOIUrl":null,"url":null,"abstract":"3D reconstruction is a fundamental task in robotics and AI, providing a prerequisite for many related applications. Fringe projection profilometry is an efficient and non-contact method for generating 3D point clouds out of 2D images. However, during the actual measurement, it is inevitable to experiment with translucent objects, such as skin, marble, and fruit. Indirect illumination from these objects has substantially compromised the precision of 3D reconstruction via the contamination of 2D images. This paper presents a fast and accurate approach to correct for indirect illumination. The essential idea is to design a highly suitable network architecture founded on a precise error model that facilitates accurate error rectification. Initially, our method transforms the error generated by indirect illumination into a sine series. Based on this error model, the multilayer perceptron is more effective in error correction than traditional methods and convolutional neural networks. Our network was trained solely on simulated data but was tested on authentic images. Three sets of experiments, including two sets of comparison experiments, indicate that the designed network can efficiently rectify the error induced by indirect illumination.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5849-5863"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error Model and Concise Temporal Network for Indirect Illumination in 3D Reconstruction\",\"authors\":\"Yuchong Chen;Pengcheng Yao;Rui Gao;Wei Zhang;Shaoyan Gai;Jian Yu;Feipeng Da\",\"doi\":\"10.1109/TIP.2024.3472502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"3D reconstruction is a fundamental task in robotics and AI, providing a prerequisite for many related applications. Fringe projection profilometry is an efficient and non-contact method for generating 3D point clouds out of 2D images. However, during the actual measurement, it is inevitable to experiment with translucent objects, such as skin, marble, and fruit. Indirect illumination from these objects has substantially compromised the precision of 3D reconstruction via the contamination of 2D images. This paper presents a fast and accurate approach to correct for indirect illumination. The essential idea is to design a highly suitable network architecture founded on a precise error model that facilitates accurate error rectification. Initially, our method transforms the error generated by indirect illumination into a sine series. Based on this error model, the multilayer perceptron is more effective in error correction than traditional methods and convolutional neural networks. Our network was trained solely on simulated data but was tested on authentic images. Three sets of experiments, including two sets of comparison experiments, indicate that the designed network can efficiently rectify the error induced by indirect illumination.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"5849-5863\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10709848/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10709848/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三维重建是机器人和人工智能领域的一项基本任务,为许多相关应用提供了先决条件。边缘投影轮廓测量法是一种从二维图像中生成三维点云的高效、非接触式方法。然而,在实际测量过程中,不可避免地要对半透明物体(如皮肤、大理石和水果)进行实验。这些物体的间接照明会污染二维图像,从而大大影响三维重建的精度。本文提出了一种快速准确的间接光照校正方法。其基本思想是在精确误差模型的基础上设计一个非常适合的网络架构,以促进误差的精确纠正。首先,我们的方法将间接光照产生的误差转换为正弦序列。基于这一误差模型,多层感知器在纠错方面比传统方法和卷积神经网络更有效。我们的网络仅在模拟数据上进行了训练,但在真实图像上进行了测试。三组实验(包括两组对比实验)表明,所设计的网络能有效纠正间接照明引起的误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error Model and Concise Temporal Network for Indirect Illumination in 3D Reconstruction
3D reconstruction is a fundamental task in robotics and AI, providing a prerequisite for many related applications. Fringe projection profilometry is an efficient and non-contact method for generating 3D point clouds out of 2D images. However, during the actual measurement, it is inevitable to experiment with translucent objects, such as skin, marble, and fruit. Indirect illumination from these objects has substantially compromised the precision of 3D reconstruction via the contamination of 2D images. This paper presents a fast and accurate approach to correct for indirect illumination. The essential idea is to design a highly suitable network architecture founded on a precise error model that facilitates accurate error rectification. Initially, our method transforms the error generated by indirect illumination into a sine series. Based on this error model, the multilayer perceptron is more effective in error correction than traditional methods and convolutional neural networks. Our network was trained solely on simulated data but was tested on authentic images. Three sets of experiments, including two sets of comparison experiments, indicate that the designed network can efficiently rectify the error induced by indirect illumination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信