GlandSAM:为无标签腺体分段模型注入形态学知识

Qixiang Zhang;Yi Li;Cheng Xue;Haonan Wang;Xiaomeng Li
{"title":"GlandSAM:为无标签腺体分段模型注入形态学知识","authors":"Qixiang Zhang;Yi Li;Cheng Xue;Haonan Wang;Xiaomeng Li","doi":"10.1109/TMI.2024.3476176","DOIUrl":null,"url":null,"abstract":"This paper presents a label-free gland segmentation, GlandSAM, which achieves comparable performance with supervised methods while no label is required during its training or inference phase. We observe that the Segment Anything model produces sub-optimal results on gland dataset: It either over-segments a gland into many fractions or under-segments the gland regions by confusing many of them with the background, due to the complex morphology of glands and lack of sufficient labels. To address this challenge, our GlandSAM innovatively injects two clues about gland morphology into SAM to guide the segmentation process: (1) Heterogeneity within glands and (2) Similarity with the background. Initially, we leverage the clues to decompose the intricate glands by selectively extracting a proposal for each gland sub-region of heterogeneous appearances. Then, we inject the morphology clues into SAM in a fine-tuning manner with a novel morphology-aware semantic grouping module that explicitly groups the high-level semantics of gland sub-regions. In this way, our GlandSAM could capture comprehensive knowledge about gland morphology, and produce well-delineated and complete segmentation results. Extensive experiments conducted on the GlaS dataset and the CRAG dataset reveal that GlandSAM outperforms state-of-the-art label-free methods by a significant margin. Notably, our GlandSAM even surpasses several fully-supervised methods that require pixel-wise labels for training, which highlights the remarkable performance and potential of GlandSAM in the realm of gland segmentation.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 2","pages":"1070-1082"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GlandSAM: Injecting Morphology Knowledge Into Segment Anything Model for Label-Free Gland Segmentation\",\"authors\":\"Qixiang Zhang;Yi Li;Cheng Xue;Haonan Wang;Xiaomeng Li\",\"doi\":\"10.1109/TMI.2024.3476176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a label-free gland segmentation, GlandSAM, which achieves comparable performance with supervised methods while no label is required during its training or inference phase. We observe that the Segment Anything model produces sub-optimal results on gland dataset: It either over-segments a gland into many fractions or under-segments the gland regions by confusing many of them with the background, due to the complex morphology of glands and lack of sufficient labels. To address this challenge, our GlandSAM innovatively injects two clues about gland morphology into SAM to guide the segmentation process: (1) Heterogeneity within glands and (2) Similarity with the background. Initially, we leverage the clues to decompose the intricate glands by selectively extracting a proposal for each gland sub-region of heterogeneous appearances. Then, we inject the morphology clues into SAM in a fine-tuning manner with a novel morphology-aware semantic grouping module that explicitly groups the high-level semantics of gland sub-regions. In this way, our GlandSAM could capture comprehensive knowledge about gland morphology, and produce well-delineated and complete segmentation results. Extensive experiments conducted on the GlaS dataset and the CRAG dataset reveal that GlandSAM outperforms state-of-the-art label-free methods by a significant margin. Notably, our GlandSAM even surpasses several fully-supervised methods that require pixel-wise labels for training, which highlights the remarkable performance and potential of GlandSAM in the realm of gland segmentation.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 2\",\"pages\":\"1070-1082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707661/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10707661/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种无标签的腺体分割方法,即gland sam,它在训练或推理阶段不需要标签的情况下,达到了与监督方法相当的性能。我们观察到,Segment Anything模型在腺体数据集上产生了次优结果:由于腺体的复杂形态和缺乏足够的标签,它要么将腺体过度分割为许多部分,要么将腺体区域与背景混淆,从而对腺体区域进行欠分割。为了解决这一挑战,我们的GlandSAM创新地在SAM中注入了两个关于腺体形态的线索来指导分割过程:(1)腺体内部的异质性;(2)与背景的相似性。最初,我们利用这些线索,通过选择性地提取每个腺体子区域的异质外观来分解复杂的腺体。然后,我们将形态学线索以微调的方式注入到SAM中,使用一种新颖的形态学感知语义分组模块,该模块显式地对腺体子区域的高级语义进行分组。通过这种方式,我们的GlandSAM可以捕获关于腺体形态的全面知识,并产生良好的描述和完整的分割结果。在GlaS数据集和CRAG数据集上进行的大量实验表明,GlandSAM在很大程度上优于最先进的无标签方法。值得注意的是,我们的gland sam甚至超过了一些需要像素标记进行训练的全监督方法,这突出了gland sam在腺体分割领域的卓越性能和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GlandSAM: Injecting Morphology Knowledge Into Segment Anything Model for Label-Free Gland Segmentation
This paper presents a label-free gland segmentation, GlandSAM, which achieves comparable performance with supervised methods while no label is required during its training or inference phase. We observe that the Segment Anything model produces sub-optimal results on gland dataset: It either over-segments a gland into many fractions or under-segments the gland regions by confusing many of them with the background, due to the complex morphology of glands and lack of sufficient labels. To address this challenge, our GlandSAM innovatively injects two clues about gland morphology into SAM to guide the segmentation process: (1) Heterogeneity within glands and (2) Similarity with the background. Initially, we leverage the clues to decompose the intricate glands by selectively extracting a proposal for each gland sub-region of heterogeneous appearances. Then, we inject the morphology clues into SAM in a fine-tuning manner with a novel morphology-aware semantic grouping module that explicitly groups the high-level semantics of gland sub-regions. In this way, our GlandSAM could capture comprehensive knowledge about gland morphology, and produce well-delineated and complete segmentation results. Extensive experiments conducted on the GlaS dataset and the CRAG dataset reveal that GlandSAM outperforms state-of-the-art label-free methods by a significant margin. Notably, our GlandSAM even surpasses several fully-supervised methods that require pixel-wise labels for training, which highlights the remarkable performance and potential of GlandSAM in the realm of gland segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信