电位驱动原位形成富含 Se-空位的 CuS@Cu2Se 以引导从 HCOOH 到 C2H5OH 的 CO2 电还原路径

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuxian Xie, Chao Lv, Lichun Kong, Cui Li, Chang Wang, Xuyu Lv, Qianmin Wu, Jiu-Ju Feng, Ai-Jun Wang, De-Li Chen, Fa Yang
{"title":"电位驱动原位形成富含 Se-空位的 CuS@Cu2Se 以引导从 HCOOH 到 C2H5OH 的 CO2 电还原路径","authors":"Shuxian Xie, Chao Lv, Lichun Kong, Cui Li, Chang Wang, Xuyu Lv, Qianmin Wu, Jiu-Ju Feng, Ai-Jun Wang, De-Li Chen, Fa Yang","doi":"10.1039/d4qi02076f","DOIUrl":null,"url":null,"abstract":"Copper chalcogenides are susceptible to electrochemical reconstruction, thus posing challenges to understand the precise structure-function relationships during CO2 electroreduction reaction (CO2RR). Here, we synthesize a hierarchical core-shell CuS@CuSe catalyst, exhibiting a controllable selectivity from 67.5% for HCOOH at −0.5 V vs. RHE to 54.7% for C2H5OH at −0.9 V vs. RHE. The overlap-labeled transmission electron microscopy and in-situ Raman spectroscopy dynamically monitor the potential-dependent structural evolution from the pristine CuS@CuSe to CuS@Cu2Se with Se vacancies (Cu2Se-VSe). Density functional theory (DFT) calculations reveal that the generated Se-vacancies stabilize Cu+ sites with shortened Cu−Cu spacing of 2.46 Å, which not only increases affinities to the adsorbed *COOH and *CO species but also promotes the easier dimerization of *CO to form *OCCO (ΔG ∼ −0.50 eV) while suppressing its direct desorption to CO (ΔG ∼ +1.63 eV) or hydrogenation to *CHO (ΔG ∼ +0.74 eV) and *COH (ΔG ∼ +1.15 eV), which is believed to determine the remarkable ethanol selectivity. And, the rapid dissociation of water over the synergistic CuS sites kinetically accelerates the proton-coupling process. Such potential-dependent imperative intermediates associated with the bifurcated pathway are directly distinguished by isotope labelling in-situ infrared spectroscopy. This work confers the prospect of designing electrochemical reconstructed copper chalcogenides catalyst for tuning C1/C2 products selectivity in CO2RR technology.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential-Driven In Situ Formation of CuS@Cu2Se with Se-Vacancy-Rich for Steering the CO2 Electroreduction Path from HCOOH to C2H5OH\",\"authors\":\"Shuxian Xie, Chao Lv, Lichun Kong, Cui Li, Chang Wang, Xuyu Lv, Qianmin Wu, Jiu-Ju Feng, Ai-Jun Wang, De-Li Chen, Fa Yang\",\"doi\":\"10.1039/d4qi02076f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Copper chalcogenides are susceptible to electrochemical reconstruction, thus posing challenges to understand the precise structure-function relationships during CO2 electroreduction reaction (CO2RR). Here, we synthesize a hierarchical core-shell CuS@CuSe catalyst, exhibiting a controllable selectivity from 67.5% for HCOOH at −0.5 V vs. RHE to 54.7% for C2H5OH at −0.9 V vs. RHE. The overlap-labeled transmission electron microscopy and in-situ Raman spectroscopy dynamically monitor the potential-dependent structural evolution from the pristine CuS@CuSe to CuS@Cu2Se with Se vacancies (Cu2Se-VSe). Density functional theory (DFT) calculations reveal that the generated Se-vacancies stabilize Cu+ sites with shortened Cu−Cu spacing of 2.46 Å, which not only increases affinities to the adsorbed *COOH and *CO species but also promotes the easier dimerization of *CO to form *OCCO (ΔG ∼ −0.50 eV) while suppressing its direct desorption to CO (ΔG ∼ +1.63 eV) or hydrogenation to *CHO (ΔG ∼ +0.74 eV) and *COH (ΔG ∼ +1.15 eV), which is believed to determine the remarkable ethanol selectivity. And, the rapid dissociation of water over the synergistic CuS sites kinetically accelerates the proton-coupling process. Such potential-dependent imperative intermediates associated with the bifurcated pathway are directly distinguished by isotope labelling in-situ infrared spectroscopy. This work confers the prospect of designing electrochemical reconstructed copper chalcogenides catalyst for tuning C1/C2 products selectivity in CO2RR technology.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi02076f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02076f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卤化铜易受电化学重构的影响,因此给了解 CO2 电还原反应(CO2RR)过程中的精确结构-功能关系带来了挑战。在此,我们合成了一种分层核壳 CuS@CuSe 催化剂,其选择性可控,在 -0.5 V 对 RHE 时对 HCOOH 的选择性为 67.5%,在 -0.9 V 对 RHE 时对 C2H5OH 的选择性为 54.7%。重叠标记透射电子显微镜和原位拉曼光谱动态监测了从原始 CuS@CuSe 到带有 Se 空位(Cu2Se-VSe)的 CuS@Cu2Se 的电位依赖性结构演变。密度泛函理论(DFT)计算显示,生成的硒空位稳定了 Cu+ 位点,缩短了 2.46 Å 的 Cu-Cu 间距,这不仅增加了与吸附的 *COOH 和 *CO 物种的亲和力,还促进了 *CO 更容易二聚形成 *OCCO (ΔG ∼ -0.50 eV),同时抑制其直接解吸为 CO(ΔG ∼ +1.63 eV)或氢化为 *CHO(ΔG ∼ +0.74 eV)和 *COH(ΔG ∼ +1.15 eV),这被认为是乙醇选择性显著的原因。而且,水在协同 CuS 位点上的快速解离在动力学上加速了质子偶联过程。通过同位素标记原位红外光谱法,可以直接区分与分叉途径相关的这种电位依赖性势必中间产物。这项工作为设计电化学重构铜瑀催化剂以调整 CO2RR 技术中 C1/C2 产物的选择性提供了前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential-Driven In Situ Formation of CuS@Cu2Se with Se-Vacancy-Rich for Steering the CO2 Electroreduction Path from HCOOH to C2H5OH
Copper chalcogenides are susceptible to electrochemical reconstruction, thus posing challenges to understand the precise structure-function relationships during CO2 electroreduction reaction (CO2RR). Here, we synthesize a hierarchical core-shell CuS@CuSe catalyst, exhibiting a controllable selectivity from 67.5% for HCOOH at −0.5 V vs. RHE to 54.7% for C2H5OH at −0.9 V vs. RHE. The overlap-labeled transmission electron microscopy and in-situ Raman spectroscopy dynamically monitor the potential-dependent structural evolution from the pristine CuS@CuSe to CuS@Cu2Se with Se vacancies (Cu2Se-VSe). Density functional theory (DFT) calculations reveal that the generated Se-vacancies stabilize Cu+ sites with shortened Cu−Cu spacing of 2.46 Å, which not only increases affinities to the adsorbed *COOH and *CO species but also promotes the easier dimerization of *CO to form *OCCO (ΔG ∼ −0.50 eV) while suppressing its direct desorption to CO (ΔG ∼ +1.63 eV) or hydrogenation to *CHO (ΔG ∼ +0.74 eV) and *COH (ΔG ∼ +1.15 eV), which is believed to determine the remarkable ethanol selectivity. And, the rapid dissociation of water over the synergistic CuS sites kinetically accelerates the proton-coupling process. Such potential-dependent imperative intermediates associated with the bifurcated pathway are directly distinguished by isotope labelling in-situ infrared spectroscopy. This work confers the prospect of designing electrochemical reconstructed copper chalcogenides catalyst for tuning C1/C2 products selectivity in CO2RR technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信