Yuting Liu, Akiyasu C. Yoshizawa, Yiwei Ling, Shujiro Okuda
{"title":"利用深度学习预测液相色谱中的小分子保留时间的启示","authors":"Yuting Liu, Akiyasu C. Yoshizawa, Yiwei Ling, Shujiro Okuda","doi":"10.1186/s13321-024-00905-1","DOIUrl":null,"url":null,"abstract":"<p>In untargeted metabolomics, structures of small molecules are annotated using liquid chromatography-mass spectrometry by leveraging information from the molecular retention time (RT) in the chromatogram and <i>m/z</i> (formerly called ''mass-to-charge ratio'') in the mass spectrum. However, correct identification of metabolites is challenging due to the vast array of small molecules. Therefore, various in silico tools for mass spectrometry peak alignment and compound prediction have been developed; however, the list of candidate compounds remains extensive. Accurate RT prediction is important to exclude false candidates and facilitate metabolite annotation. Recent advancements in artificial intelligence (AI) have led to significant breakthroughs in the use of deep learning models in various fields. Release of a large RT dataset has mitigated the bottlenecks limiting the application of deep learning models, thereby improving their application in RT prediction tasks. This review lists the databases that can be used to expand training datasets and concerns the issue about molecular representation inconsistencies in datasets. It also discusses the application of AI technology for RT prediction, particularly in the 5 years following the release of the METLIN small molecule RT dataset. This review provides a comprehensive overview of the AI applications used for RT prediction, highlighting the progress and remaining challenges.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00905-1","citationCount":"0","resultStr":"{\"title\":\"Insights into predicting small molecule retention times in liquid chromatography using deep learning\",\"authors\":\"Yuting Liu, Akiyasu C. Yoshizawa, Yiwei Ling, Shujiro Okuda\",\"doi\":\"10.1186/s13321-024-00905-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In untargeted metabolomics, structures of small molecules are annotated using liquid chromatography-mass spectrometry by leveraging information from the molecular retention time (RT) in the chromatogram and <i>m/z</i> (formerly called ''mass-to-charge ratio'') in the mass spectrum. However, correct identification of metabolites is challenging due to the vast array of small molecules. Therefore, various in silico tools for mass spectrometry peak alignment and compound prediction have been developed; however, the list of candidate compounds remains extensive. Accurate RT prediction is important to exclude false candidates and facilitate metabolite annotation. Recent advancements in artificial intelligence (AI) have led to significant breakthroughs in the use of deep learning models in various fields. Release of a large RT dataset has mitigated the bottlenecks limiting the application of deep learning models, thereby improving their application in RT prediction tasks. This review lists the databases that can be used to expand training datasets and concerns the issue about molecular representation inconsistencies in datasets. It also discusses the application of AI technology for RT prediction, particularly in the 5 years following the release of the METLIN small molecule RT dataset. This review provides a comprehensive overview of the AI applications used for RT prediction, highlighting the progress and remaining challenges.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00905-1\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00905-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00905-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Insights into predicting small molecule retention times in liquid chromatography using deep learning
In untargeted metabolomics, structures of small molecules are annotated using liquid chromatography-mass spectrometry by leveraging information from the molecular retention time (RT) in the chromatogram and m/z (formerly called ''mass-to-charge ratio'') in the mass spectrum. However, correct identification of metabolites is challenging due to the vast array of small molecules. Therefore, various in silico tools for mass spectrometry peak alignment and compound prediction have been developed; however, the list of candidate compounds remains extensive. Accurate RT prediction is important to exclude false candidates and facilitate metabolite annotation. Recent advancements in artificial intelligence (AI) have led to significant breakthroughs in the use of deep learning models in various fields. Release of a large RT dataset has mitigated the bottlenecks limiting the application of deep learning models, thereby improving their application in RT prediction tasks. This review lists the databases that can be used to expand training datasets and concerns the issue about molecular representation inconsistencies in datasets. It also discusses the application of AI technology for RT prediction, particularly in the 5 years following the release of the METLIN small molecule RT dataset. This review provides a comprehensive overview of the AI applications used for RT prediction, highlighting the progress and remaining challenges.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.