复杂和莫拉瓦局域 K 理论中的格罗莫夫-维滕不变式

IF 2.4 1区 数学 Q1 MATHEMATICS
Mohammed Abouzaid, Mark McLean, Ivan Smith
{"title":"复杂和莫拉瓦局域 K 理论中的格罗莫夫-维滕不变式","authors":"Mohammed Abouzaid, Mark McLean, Ivan Smith","doi":"10.1007/s00039-024-00697-4","DOIUrl":null,"url":null,"abstract":"<p>Given a closed symplectic manifold <i>X</i>, we construct Gromov-Witten-type invariants valued both in (complex) <i>K</i>-theory and in any complex-oriented cohomology theory <span>\\(\\mathbb{K}\\)</span> which is <i>K</i><sub><i>p</i></sub>(<i>n</i>)-local for some Morava <i>K</i>-theory <i>K</i><sub><i>p</i></sub>(<i>n</i>). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantum <i>K</i>-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantum <i>K</i>-theory and quantum <span>\\(\\mathbb{K}\\)</span>-theory as commutative deformations of the corresponding (generalised) cohomology rings of <i>X</i>; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus to <i>X</i>. On the algebraic side, in order to establish a common framework covering both ordinary <i>K</i>-theory and <i>K</i><sub><i>p</i></sub>(<i>n</i>)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"205 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gromov-Witten Invariants in Complex and Morava-Local K-Theories\",\"authors\":\"Mohammed Abouzaid, Mark McLean, Ivan Smith\",\"doi\":\"10.1007/s00039-024-00697-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a closed symplectic manifold <i>X</i>, we construct Gromov-Witten-type invariants valued both in (complex) <i>K</i>-theory and in any complex-oriented cohomology theory <span>\\\\(\\\\mathbb{K}\\\\)</span> which is <i>K</i><sub><i>p</i></sub>(<i>n</i>)-local for some Morava <i>K</i>-theory <i>K</i><sub><i>p</i></sub>(<i>n</i>). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantum <i>K</i>-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantum <i>K</i>-theory and quantum <span>\\\\(\\\\mathbb{K}\\\\)</span>-theory as commutative deformations of the corresponding (generalised) cohomology rings of <i>X</i>; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus to <i>X</i>. On the algebraic side, in order to establish a common framework covering both ordinary <i>K</i>-theory and <i>K</i><sub><i>p</i></sub>(<i>n</i>)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00697-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00697-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个封闭折射流形 X,我们构造了格罗莫夫-维滕类型的不变式,这些不变式在(复)K 理论和任何面向复的同调理论 \(\mathbb{K}\)中都有价值,对于某个莫拉瓦 K 理论 Kp(n)来说,这些同调理论是 Kp(n)-local 的。我们证明了这些不变式满足康采维奇-马宁公理的一个版本,从而扩展了吉文特和李(Givental and Lee)针对复射代数品种的量子 K 理论所做的工作。特别是,我们证明了格罗莫夫-维滕型分裂公理,并因此定义了量子 K 理论和量子 \(\mathbb{K}\)理论为 X 的相应(广义)同调环的交换变形;量子积的定义涉及底层同调理论的形式群。在代数方面,为了建立一个涵盖普通K理论和Kp(n)局域理论的共同框架,我们引入了一种 "计数理论 "的形式主义,用于全局仓石图范畴上的枚举不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Gromov-Witten Invariants in Complex and Morava-Local K-Theories

Gromov-Witten Invariants in Complex and Morava-Local K-Theories

Given a closed symplectic manifold X, we construct Gromov-Witten-type invariants valued both in (complex) K-theory and in any complex-oriented cohomology theory \(\mathbb{K}\) which is Kp(n)-local for some Morava K-theory Kp(n). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantum K-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantum K-theory and quantum \(\mathbb{K}\)-theory as commutative deformations of the corresponding (generalised) cohomology rings of X; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus to X. On the algebraic side, in order to establish a common framework covering both ordinary K-theory and Kp(n)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信