{"title":"复杂和莫拉瓦局域 K 理论中的格罗莫夫-维滕不变式","authors":"Mohammed Abouzaid, Mark McLean, Ivan Smith","doi":"10.1007/s00039-024-00697-4","DOIUrl":null,"url":null,"abstract":"<p>Given a closed symplectic manifold <i>X</i>, we construct Gromov-Witten-type invariants valued both in (complex) <i>K</i>-theory and in any complex-oriented cohomology theory <span>\\(\\mathbb{K}\\)</span> which is <i>K</i><sub><i>p</i></sub>(<i>n</i>)-local for some Morava <i>K</i>-theory <i>K</i><sub><i>p</i></sub>(<i>n</i>). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantum <i>K</i>-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantum <i>K</i>-theory and quantum <span>\\(\\mathbb{K}\\)</span>-theory as commutative deformations of the corresponding (generalised) cohomology rings of <i>X</i>; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus to <i>X</i>. On the algebraic side, in order to establish a common framework covering both ordinary <i>K</i>-theory and <i>K</i><sub><i>p</i></sub>(<i>n</i>)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"205 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gromov-Witten Invariants in Complex and Morava-Local K-Theories\",\"authors\":\"Mohammed Abouzaid, Mark McLean, Ivan Smith\",\"doi\":\"10.1007/s00039-024-00697-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a closed symplectic manifold <i>X</i>, we construct Gromov-Witten-type invariants valued both in (complex) <i>K</i>-theory and in any complex-oriented cohomology theory <span>\\\\(\\\\mathbb{K}\\\\)</span> which is <i>K</i><sub><i>p</i></sub>(<i>n</i>)-local for some Morava <i>K</i>-theory <i>K</i><sub><i>p</i></sub>(<i>n</i>). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantum <i>K</i>-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantum <i>K</i>-theory and quantum <span>\\\\(\\\\mathbb{K}\\\\)</span>-theory as commutative deformations of the corresponding (generalised) cohomology rings of <i>X</i>; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus to <i>X</i>. On the algebraic side, in order to establish a common framework covering both ordinary <i>K</i>-theory and <i>K</i><sub><i>p</i></sub>(<i>n</i>)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"205 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-024-00697-4\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00697-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定一个封闭折射流形 X,我们构造了格罗莫夫-维滕类型的不变式,这些不变式在(复)K 理论和任何面向复的同调理论 \(\mathbb{K}\)中都有价值,对于某个莫拉瓦 K 理论 Kp(n)来说,这些同调理论是 Kp(n)-local 的。我们证明了这些不变式满足康采维奇-马宁公理的一个版本,从而扩展了吉文特和李(Givental and Lee)针对复射代数品种的量子 K 理论所做的工作。特别是,我们证明了格罗莫夫-维滕型分裂公理,并因此定义了量子 K 理论和量子 \(\mathbb{K}\)理论为 X 的相应(广义)同调环的交换变形;量子积的定义涉及底层同调理论的形式群。在代数方面,为了建立一个涵盖普通K理论和Kp(n)局域理论的共同框架,我们引入了一种 "计数理论 "的形式主义,用于全局仓石图范畴上的枚举不变式。
Gromov-Witten Invariants in Complex and Morava-Local K-Theories
Given a closed symplectic manifold X, we construct Gromov-Witten-type invariants valued both in (complex) K-theory and in any complex-oriented cohomology theory \(\mathbb{K}\) which is Kp(n)-local for some Morava K-theory Kp(n). We show that these invariants satisfy a version of the Kontsevich-Manin axioms, extending Givental and Lee’s work for the quantum K-theory of complex projective algebraic varieties. In particular, we prove a Gromov-Witten type splitting axiom, and hence define quantum K-theory and quantum \(\mathbb{K}\)-theory as commutative deformations of the corresponding (generalised) cohomology rings of X; the definition of the quantum product involves the formal group of the underlying cohomology theory. The key geometric input of these results is a construction of global Kuranishi charts for moduli spaces of stable maps of arbitrary genus to X. On the algebraic side, in order to establish a common framework covering both ordinary K-theory and Kp(n)-local theories, we introduce a formalism of ‘counting theories’ for enumerative invariants on a category of global Kuranishi charts.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.