MREDTA:基于 BERT 和变换器的分子表征编码器,用于预测药物与目标的结合亲和力。

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xu Sun, Juanjuan Huang, Yabo Fang, Yixuan Jin, Jiageng Wu, Guoqing Wang, Jiwei Jia
{"title":"MREDTA:基于 BERT 和变换器的分子表征编码器,用于预测药物与目标的结合亲和力。","authors":"Xu Sun,&nbsp;Juanjuan Huang,&nbsp;Yabo Fang,&nbsp;Yixuan Jin,&nbsp;Jiageng Wu,&nbsp;Guoqing Wang,&nbsp;Jiwei Jia","doi":"10.1096/fj.202401254R","DOIUrl":null,"url":null,"abstract":"<p>Drug-target binding affinity (DTA) prediction is vital for drug repositioning. The accuracy and generalizability of DTA models remain a major challenge. Here, we develop a model composed of BERT-Trans Block, Multi-Trans Block, and DTI Learning modules, referred to as Molecular Representation Encoder-based DTA prediction (MREDTA). MREDTA has three advantages: (1) extraction of both local and global molecular features simultaneously through skip connections; (2) improved sensitivity to molecular structures through the Multi-Trans Block; (3) enhanced generalizability through the introduction of BERT. Compared with 12 advanced models, benchmark testing of KIBA and Davis datasets demonstrated optimal performance of MREDTA. In case study, we applied MREDTA to 2034 FDA-approved drugs for treating non-small-cell lung cancer (NSCLC), all of which act on mutant EGFR<sup>T790M</sup> protein. The corresponding molecular docking results demonstrated the robustness of MREDTA.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"38 19","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MREDTA: A BERT and transformer-based molecular representation encoder for predicting drug-target binding affinity\",\"authors\":\"Xu Sun,&nbsp;Juanjuan Huang,&nbsp;Yabo Fang,&nbsp;Yixuan Jin,&nbsp;Jiageng Wu,&nbsp;Guoqing Wang,&nbsp;Jiwei Jia\",\"doi\":\"10.1096/fj.202401254R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Drug-target binding affinity (DTA) prediction is vital for drug repositioning. The accuracy and generalizability of DTA models remain a major challenge. Here, we develop a model composed of BERT-Trans Block, Multi-Trans Block, and DTI Learning modules, referred to as Molecular Representation Encoder-based DTA prediction (MREDTA). MREDTA has three advantages: (1) extraction of both local and global molecular features simultaneously through skip connections; (2) improved sensitivity to molecular structures through the Multi-Trans Block; (3) enhanced generalizability through the introduction of BERT. Compared with 12 advanced models, benchmark testing of KIBA and Davis datasets demonstrated optimal performance of MREDTA. In case study, we applied MREDTA to 2034 FDA-approved drugs for treating non-small-cell lung cancer (NSCLC), all of which act on mutant EGFR<sup>T790M</sup> protein. The corresponding molecular docking results demonstrated the robustness of MREDTA.</p>\",\"PeriodicalId\":50455,\"journal\":{\"name\":\"The FASEB Journal\",\"volume\":\"38 19\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FASEB Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401254R\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202401254R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

药物-靶点结合亲和力(DTA)预测对药物重新定位至关重要。DTA 模型的准确性和通用性仍是一大挑战。在此,我们开发了一种由 BERT-Trans Block、Multi-Trans Block 和 DTI 学习模块组成的模型,称为基于分子表征编码器的 DTA 预测(MREDTA)。MREDTA有三个优点:(1)通过跳转连接同时提取局部和全局分子特征;(2)通过Multi-Trans Block提高对分子结构的敏感性;(3)通过引入BERT增强通用性。与 12 个高级模型相比,KIBA 和 Davis 数据集的基准测试表明 MREDTA 具有最佳性能。在案例研究中,我们将 MREDTA 应用于 2034 种 FDA 批准的治疗非小细胞肺癌(NSCLC)的药物,这些药物都作用于突变的 EGFRT790M 蛋白。相应的分子对接结果证明了 MREDTA 的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

MREDTA: A BERT and transformer-based molecular representation encoder for predicting drug-target binding affinity

MREDTA: A BERT and transformer-based molecular representation encoder for predicting drug-target binding affinity

Drug-target binding affinity (DTA) prediction is vital for drug repositioning. The accuracy and generalizability of DTA models remain a major challenge. Here, we develop a model composed of BERT-Trans Block, Multi-Trans Block, and DTI Learning modules, referred to as Molecular Representation Encoder-based DTA prediction (MREDTA). MREDTA has three advantages: (1) extraction of both local and global molecular features simultaneously through skip connections; (2) improved sensitivity to molecular structures through the Multi-Trans Block; (3) enhanced generalizability through the introduction of BERT. Compared with 12 advanced models, benchmark testing of KIBA and Davis datasets demonstrated optimal performance of MREDTA. In case study, we applied MREDTA to 2034 FDA-approved drugs for treating non-small-cell lung cancer (NSCLC), all of which act on mutant EGFRT790M protein. The corresponding molecular docking results demonstrated the robustness of MREDTA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信