Osval A Montesinos-López, Gloria Isabel Huerta Prado, José Cricelio Montesinos-López, Abelardo Montesinos-López, José Crossa
{"title":"线性混合模型框架下的基因组预测图模型。","authors":"Osval A Montesinos-López, Gloria Isabel Huerta Prado, José Cricelio Montesinos-López, Abelardo Montesinos-López, José Crossa","doi":"10.1002/tpg2.20522","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic selection is revolutionizing both plant and animal breeding, with its practical application depending critically on high prediction accuracy. In this study, we aimed to enhance prediction accuracy by exploring the use of graph models within a linear mixed model framework. Our investigation revealed that incorporating the graph constructed with line connections alone resulted in decreased prediction accuracy compared to conventional methods that consider only genotype effects. However, integrating both genotype effects and the graph structure led to slightly improved results over considering genotype effects alone. These findings were validated across 14 datasets commonly used in plant breeding research.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":" ","pages":"e20522"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628911/pdf/","citationCount":"0","resultStr":"{\"title\":\"A graph model for genomic prediction in the context of a linear mixed model framework.\",\"authors\":\"Osval A Montesinos-López, Gloria Isabel Huerta Prado, José Cricelio Montesinos-López, Abelardo Montesinos-López, José Crossa\",\"doi\":\"10.1002/tpg2.20522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genomic selection is revolutionizing both plant and animal breeding, with its practical application depending critically on high prediction accuracy. In this study, we aimed to enhance prediction accuracy by exploring the use of graph models within a linear mixed model framework. Our investigation revealed that incorporating the graph constructed with line connections alone resulted in decreased prediction accuracy compared to conventional methods that consider only genotype effects. However, integrating both genotype effects and the graph structure led to slightly improved results over considering genotype effects alone. These findings were validated across 14 datasets commonly used in plant breeding research.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":\" \",\"pages\":\"e20522\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628911/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20522\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20522","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
A graph model for genomic prediction in the context of a linear mixed model framework.
Genomic selection is revolutionizing both plant and animal breeding, with its practical application depending critically on high prediction accuracy. In this study, we aimed to enhance prediction accuracy by exploring the use of graph models within a linear mixed model framework. Our investigation revealed that incorporating the graph constructed with line connections alone resulted in decreased prediction accuracy compared to conventional methods that consider only genotype effects. However, integrating both genotype effects and the graph structure led to slightly improved results over considering genotype effects alone. These findings were validated across 14 datasets commonly used in plant breeding research.
期刊介绍:
The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.