{"title":"两个姊妹酵母物种之间有益突变效应的分布无法很好地解释葡萄园适应性的自然结果。","authors":"Emery R Longan, Justin C Fay","doi":"10.1093/genetics/iyae160","DOIUrl":null,"url":null,"abstract":"<p><p>Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast could be driven by a number of factors including niche differences or differential access to resistance mutations between species. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants. We found that the distributions of mutational effects displayed by the two species were similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a de novo duplication of the CUP1 gene in S. paradoxus but not in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger effects in S. paradoxus. Our results show that even when available mutations are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631397/pdf/","citationCount":"0","resultStr":"{\"title\":\"The distribution of beneficial mutational effects between two sister yeast species poorly explains natural outcomes of vineyard adaptation.\",\"authors\":\"Emery R Longan, Justin C Fay\",\"doi\":\"10.1093/genetics/iyae160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast could be driven by a number of factors including niche differences or differential access to resistance mutations between species. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants. We found that the distributions of mutational effects displayed by the two species were similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a de novo duplication of the CUP1 gene in S. paradoxus but not in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger effects in S. paradoxus. Our results show that even when available mutations are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631397/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyae160\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae160","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
摘要
驯化的酿酒酵母菌株已经适应了抵抗铜和亚硫酸盐这两种酿酒中常用的化学胁迫物质。尽管矛盾酵母菌与葡萄园中的酿酒酵母菌一直共生,但矛盾酵母菌并不适应这些化学物质。造成这种反差的原因有很多,包括物种间的生态位差异或获得抗性突变的机会不同。在本研究中,我们采用了比较诱变的方法来检验 S. paradoxus 是否在获得更强的铜和亚硫酸盐抗性方面受到突变的限制。对于这两个物种,我们检测了抗性突变的速率、效应大小和多效应成本,并对 150 个突变体的子集进行了测序。我们发现,这两个物种的突变效应分布相似,但无法很好地解释自然模式。我们还发现,在这两个物种中,第八号染色体非整倍体和 PMA1 的功能缺失突变都会产生铜抗性,而 REG1 的功能缺失突变只是麦角菌产生铜抗性的一个可行途径。我们还在 S. paradoxus 中观察到 CUP1 基因的新重复,但在 S. cerevisiae 中却没有观察到。对于亚硫酸盐,RTS1 和 KSP1 的功能缺失突变在两个物种中都会产生抗性,但 RTS1 的突变在 S. paradoxus 中的影响更大。我们的研究结果表明,即使可用的突变大致相同,物种的适应途径也会有所不同。这些结果还表明,对突变效应分布的检测可能缺乏对适应性结果的预测性洞察力。
The distribution of beneficial mutational effects between two sister yeast species poorly explains natural outcomes of vineyard adaptation.
Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus has not adapted to these chemicals despite being consistently present in sympatry with S. cerevisiae in vineyards. This contrast could be driven by a number of factors including niche differences or differential access to resistance mutations between species. In this study, we used a comparative mutagenesis approach to test whether S. paradoxus is mutationally constrained with respect to acquiring greater copper and sulfite resistance. For both species, we assayed the rate, effect size, and pleiotropic costs of resistance mutations and sequenced a subset of 150 mutants. We found that the distributions of mutational effects displayed by the two species were similar and poorly explained the natural pattern. We also found that chromosome VIII aneuploidy and loss of function mutations in PMA1 confer copper resistance in both species, whereas loss of function mutations in REG1 were only a viable route to copper resistance in S. cerevisiae. We also observed a de novo duplication of the CUP1 gene in S. paradoxus but not in S. cerevisiae. For sulfite, loss of function mutations in RTS1 and KSP1 confer resistance in both species, but mutations in RTS1 have larger effects in S. paradoxus. Our results show that even when available mutations are largely similar, species can differ in the adaptive paths available to them. They also demonstrate that assays of the distribution of mutational effects may lack predictive insight concerning adaptive outcomes.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.