在可自主重构的叽里呱啦启发式机械系统中实现机械本体感知。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Weijian Jiao, Hang Shu, Qiguang He, Jordan R Raney
{"title":"在可自主重构的叽里呱啦启发式机械系统中实现机械本体感知。","authors":"Weijian Jiao, Hang Shu, Qiguang He, Jordan R Raney","doi":"10.1098/rsta.2024.0116","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical metamaterials have recently been exploited as an interesting platform for information storing, retrieval and processing, analogous to electronic devices. In this work, we describe the design and fabrication a two-dimensional (2D) multistable metamaterial consisting of building blocks that can be switched between two distinct stable phases, and which are capable of storing binary information analogous to digital bits. By changing the spatial distribution of the phases, we can achieve a variety of different configurations and tunable mechanical properties (both static and dynamic). Moreover, we demonstrate the ability to determine the phase distribution via simple probing of the dynamic properties, to which we refer as mechanical proprioception. Finally, as a simple demonstration of feasibility, we illustrate a strategy for building autonomous kirigami systems that can receive inputs from their environment. This work could bring new insights for the design of mechanical metamaterials with information processing and computing functionalities. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240116"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward mechanical proprioception in autonomously reconfigurable kirigami-inspired mechanical systems.\",\"authors\":\"Weijian Jiao, Hang Shu, Qiguang He, Jordan R Raney\",\"doi\":\"10.1098/rsta.2024.0116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mechanical metamaterials have recently been exploited as an interesting platform for information storing, retrieval and processing, analogous to electronic devices. In this work, we describe the design and fabrication a two-dimensional (2D) multistable metamaterial consisting of building blocks that can be switched between two distinct stable phases, and which are capable of storing binary information analogous to digital bits. By changing the spatial distribution of the phases, we can achieve a variety of different configurations and tunable mechanical properties (both static and dynamic). Moreover, we demonstrate the ability to determine the phase distribution via simple probing of the dynamic properties, to which we refer as mechanical proprioception. Finally, as a simple demonstration of feasibility, we illustrate a strategy for building autonomous kirigami systems that can receive inputs from their environment. This work could bring new insights for the design of mechanical metamaterials with information processing and computing functionalities. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2283\",\"pages\":\"20240116\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0116\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0116","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

机械超材料最近已被作为一种有趣的平台加以利用,用于信息存储、检索和处理,类似于电子设备。在这项工作中,我们介绍了一种二维(2D)多稳态超材料的设计和制造,这种超材料由可在两个不同的稳定相位之间切换的构件组成,能够存储类似于数字比特的二进制信息。通过改变相位的空间分布,我们可以实现各种不同的配置和可调机械特性(静态和动态)。此外,我们还展示了通过简单的动态特性探测来确定相位分布的能力,我们称之为机械本体感觉。最后,作为可行性的简单演示,我们说明了构建可从环境中接收输入的自主叽里咕噜系统的策略。这项工作将为设计具有信息处理和计算功能的机械超材料带来新的启示。本文是主题 "折纸/气泡纸启发结构:从基础到应用 "的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward mechanical proprioception in autonomously reconfigurable kirigami-inspired mechanical systems.

Mechanical metamaterials have recently been exploited as an interesting platform for information storing, retrieval and processing, analogous to electronic devices. In this work, we describe the design and fabrication a two-dimensional (2D) multistable metamaterial consisting of building blocks that can be switched between two distinct stable phases, and which are capable of storing binary information analogous to digital bits. By changing the spatial distribution of the phases, we can achieve a variety of different configurations and tunable mechanical properties (both static and dynamic). Moreover, we demonstrate the ability to determine the phase distribution via simple probing of the dynamic properties, to which we refer as mechanical proprioception. Finally, as a simple demonstration of feasibility, we illustrate a strategy for building autonomous kirigami systems that can receive inputs from their environment. This work could bring new insights for the design of mechanical metamaterials with information processing and computing functionalities. This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信