折纸顶点分析的拉格朗日方法:运动学。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Matthew Grasinger, Andrew Gillman, Philip R Buskohl
{"title":"折纸顶点分析的拉格朗日方法:运动学。","authors":"Matthew Grasinger, Andrew Gillman, Philip R Buskohl","doi":"10.1098/rsta.2024.0203","DOIUrl":null,"url":null,"abstract":"<p><p>The use of origami in engineering has significantly expanded in recent years, spanning deployable structures across scales, folding robotics and mechanical metamaterials. However, finding foldable paths can be a formidable task as the kinematics are determined by a nonlinear system of equations, often with several degrees of freedom. In this article, we leverage a Lagrangian approach to derive reduced-order compatibility conditions for rigid-facet origami vertices with reflection and rotational symmetries. Then, using the reduced-order conditions, we derive exact, multi-degree of freedom solutions for degree 6 and degree 8 vertices with prescribed symmetries. The exact kinematic solutions allow us to efficiently investigate the topology of allowable kinematics, including the consideration of a self-contact constraint, and then visually interpret the role of geometric design parameters on these admissible fold paths by monitoring the change in the kinematic topology. We then introduce a procedure to construct lower-symmetry kinematic solutions by breaking symmetry of higher-order kinematic solutions in a systematic way that preserves compatibility. The multi-degree of freedom solutions discovered here should assist with building intuition of the kinematic feasibility of higher-degree origami vertices and also facilitate the development of new algorithmic procedures for origami-engineering design.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240203"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrangian approach to origami vertex analysis: kinematics.\",\"authors\":\"Matthew Grasinger, Andrew Gillman, Philip R Buskohl\",\"doi\":\"10.1098/rsta.2024.0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of origami in engineering has significantly expanded in recent years, spanning deployable structures across scales, folding robotics and mechanical metamaterials. However, finding foldable paths can be a formidable task as the kinematics are determined by a nonlinear system of equations, often with several degrees of freedom. In this article, we leverage a Lagrangian approach to derive reduced-order compatibility conditions for rigid-facet origami vertices with reflection and rotational symmetries. Then, using the reduced-order conditions, we derive exact, multi-degree of freedom solutions for degree 6 and degree 8 vertices with prescribed symmetries. The exact kinematic solutions allow us to efficiently investigate the topology of allowable kinematics, including the consideration of a self-contact constraint, and then visually interpret the role of geometric design parameters on these admissible fold paths by monitoring the change in the kinematic topology. We then introduce a procedure to construct lower-symmetry kinematic solutions by breaking symmetry of higher-order kinematic solutions in a systematic way that preserves compatibility. The multi-degree of freedom solutions discovered here should assist with building intuition of the kinematic feasibility of higher-degree origami vertices and also facilitate the development of new algorithmic procedures for origami-engineering design.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2283\",\"pages\":\"20240203\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0203\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0203","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近年来,折纸在工程学中的应用大幅扩展,涵盖了跨尺度可部署结构、折叠机器人和机械超材料。然而,寻找可折叠路径可能是一项艰巨的任务,因为运动学是由非线性方程组决定的,通常具有多个自由度。在本文中,我们利用拉格朗日方法推导出具有反射和旋转对称性的刚性折纸顶点的降阶相容性条件。然后,利用降阶条件,我们为具有规定对称性的 6 度和 8 度顶点推导出精确的多自由度解决方案。有了精确的运动学解决方案,我们就能有效地研究允许的运动学拓扑结构,包括考虑自接触约束,然后通过监测运动学拓扑结构的变化,直观地解释几何设计参数在这些允许的折叠路径上的作用。然后,我们介绍了一种程序,通过系统地打破高阶运动学解决方案的对称性来构建低对称性运动学解决方案,从而保持兼容性。在此发现的多自由度解决方案应有助于建立对高阶折纸顶点运动学可行性的直观认识,并促进折纸工程设计新算法程序的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lagrangian approach to origami vertex analysis: kinematics.

The use of origami in engineering has significantly expanded in recent years, spanning deployable structures across scales, folding robotics and mechanical metamaterials. However, finding foldable paths can be a formidable task as the kinematics are determined by a nonlinear system of equations, often with several degrees of freedom. In this article, we leverage a Lagrangian approach to derive reduced-order compatibility conditions for rigid-facet origami vertices with reflection and rotational symmetries. Then, using the reduced-order conditions, we derive exact, multi-degree of freedom solutions for degree 6 and degree 8 vertices with prescribed symmetries. The exact kinematic solutions allow us to efficiently investigate the topology of allowable kinematics, including the consideration of a self-contact constraint, and then visually interpret the role of geometric design parameters on these admissible fold paths by monitoring the change in the kinematic topology. We then introduce a procedure to construct lower-symmetry kinematic solutions by breaking symmetry of higher-order kinematic solutions in a systematic way that preserves compatibility. The multi-degree of freedom solutions discovered here should assist with building intuition of the kinematic feasibility of higher-degree origami vertices and also facilitate the development of new algorithmic procedures for origami-engineering design.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信