Matthew Grasinger, Andrew Gillman, Philip R Buskohl
{"title":"折纸顶点分析的拉格朗日方法:运动学。","authors":"Matthew Grasinger, Andrew Gillman, Philip R Buskohl","doi":"10.1098/rsta.2024.0203","DOIUrl":null,"url":null,"abstract":"<p><p>The use of origami in engineering has significantly expanded in recent years, spanning deployable structures across scales, folding robotics and mechanical metamaterials. However, finding foldable paths can be a formidable task as the kinematics are determined by a nonlinear system of equations, often with several degrees of freedom. In this article, we leverage a Lagrangian approach to derive reduced-order compatibility conditions for rigid-facet origami vertices with reflection and rotational symmetries. Then, using the reduced-order conditions, we derive exact, multi-degree of freedom solutions for degree 6 and degree 8 vertices with prescribed symmetries. The exact kinematic solutions allow us to efficiently investigate the topology of allowable kinematics, including the consideration of a self-contact constraint, and then visually interpret the role of geometric design parameters on these admissible fold paths by monitoring the change in the kinematic topology. We then introduce a procedure to construct lower-symmetry kinematic solutions by breaking symmetry of higher-order kinematic solutions in a systematic way that preserves compatibility. The multi-degree of freedom solutions discovered here should assist with building intuition of the kinematic feasibility of higher-degree origami vertices and also facilitate the development of new algorithmic procedures for origami-engineering design.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240203"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lagrangian approach to origami vertex analysis: kinematics.\",\"authors\":\"Matthew Grasinger, Andrew Gillman, Philip R Buskohl\",\"doi\":\"10.1098/rsta.2024.0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of origami in engineering has significantly expanded in recent years, spanning deployable structures across scales, folding robotics and mechanical metamaterials. However, finding foldable paths can be a formidable task as the kinematics are determined by a nonlinear system of equations, often with several degrees of freedom. In this article, we leverage a Lagrangian approach to derive reduced-order compatibility conditions for rigid-facet origami vertices with reflection and rotational symmetries. Then, using the reduced-order conditions, we derive exact, multi-degree of freedom solutions for degree 6 and degree 8 vertices with prescribed symmetries. The exact kinematic solutions allow us to efficiently investigate the topology of allowable kinematics, including the consideration of a self-contact constraint, and then visually interpret the role of geometric design parameters on these admissible fold paths by monitoring the change in the kinematic topology. We then introduce a procedure to construct lower-symmetry kinematic solutions by breaking symmetry of higher-order kinematic solutions in a systematic way that preserves compatibility. The multi-degree of freedom solutions discovered here should assist with building intuition of the kinematic feasibility of higher-degree origami vertices and also facilitate the development of new algorithmic procedures for origami-engineering design.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2283\",\"pages\":\"20240203\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0203\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0203","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Lagrangian approach to origami vertex analysis: kinematics.
The use of origami in engineering has significantly expanded in recent years, spanning deployable structures across scales, folding robotics and mechanical metamaterials. However, finding foldable paths can be a formidable task as the kinematics are determined by a nonlinear system of equations, often with several degrees of freedom. In this article, we leverage a Lagrangian approach to derive reduced-order compatibility conditions for rigid-facet origami vertices with reflection and rotational symmetries. Then, using the reduced-order conditions, we derive exact, multi-degree of freedom solutions for degree 6 and degree 8 vertices with prescribed symmetries. The exact kinematic solutions allow us to efficiently investigate the topology of allowable kinematics, including the consideration of a self-contact constraint, and then visually interpret the role of geometric design parameters on these admissible fold paths by monitoring the change in the kinematic topology. We then introduce a procedure to construct lower-symmetry kinematic solutions by breaking symmetry of higher-order kinematic solutions in a systematic way that preserves compatibility. The multi-degree of freedom solutions discovered here should assist with building intuition of the kinematic feasibility of higher-degree origami vertices and also facilitate the development of new algorithmic procedures for origami-engineering design.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.