{"title":"周期表面如何弯曲","authors":"Hussein Nassar","doi":"10.1098/rsta.2024.0016","DOIUrl":null,"url":null,"abstract":"<p><p>A periodic surface is one that is invariant by a two-dimensional lattice of translations. Deformation modes that stretch the lattice without stretching the surface are effective membrane modes. Deformation modes that bend the lattice without stretching the surface are effective bending modes. For periodic piecewise smooth simply connected surfaces, it is shown that the effective membrane modes are, in a sense, orthogonal to effective bending modes. This means that if a surface gains a membrane mode, it loses a bending mode, and conversely, in such a way that the total number of modes, membrane and bending combined, can never exceed 3. Various examples, inspired from curved-crease origami tessellations, illustrate the results.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240016"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How periodic surfaces bend.\",\"authors\":\"Hussein Nassar\",\"doi\":\"10.1098/rsta.2024.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A periodic surface is one that is invariant by a two-dimensional lattice of translations. Deformation modes that stretch the lattice without stretching the surface are effective membrane modes. Deformation modes that bend the lattice without stretching the surface are effective bending modes. For periodic piecewise smooth simply connected surfaces, it is shown that the effective membrane modes are, in a sense, orthogonal to effective bending modes. This means that if a surface gains a membrane mode, it loses a bending mode, and conversely, in such a way that the total number of modes, membrane and bending combined, can never exceed 3. Various examples, inspired from curved-crease origami tessellations, illustrate the results.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2283\",\"pages\":\"20240016\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0016\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0016","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A periodic surface is one that is invariant by a two-dimensional lattice of translations. Deformation modes that stretch the lattice without stretching the surface are effective membrane modes. Deformation modes that bend the lattice without stretching the surface are effective bending modes. For periodic piecewise smooth simply connected surfaces, it is shown that the effective membrane modes are, in a sense, orthogonal to effective bending modes. This means that if a surface gains a membrane mode, it loses a bending mode, and conversely, in such a way that the total number of modes, membrane and bending combined, can never exceed 3. Various examples, inspired from curved-crease origami tessellations, illustrate the results.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.
期刊介绍:
Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.