用于折纸启发机制的磁稳定铰链的特性。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
H T Pruett, P Klocke, L Howell, S Magleby
{"title":"用于折纸启发机制的磁稳定铰链的特性。","authors":"H T Pruett, P Klocke, L Howell, S Magleby","doi":"10.1098/rsta.2024.0008","DOIUrl":null,"url":null,"abstract":"<p><p>Origami-inspired mechanisms provide opportunities for deployable systems, including reflectarray antennas. There is a need for approaches to deploy and stabilize such arrays. Magnetic mechanisms show promise for meeting those needs and how methods for modelling their behaviour would facilitate their design and analysis. We demonstrate the existence of bistability in select configurations of magnetically stabilized hinges and characterize their equilibrium positions as a function of parameters estimated from simulation data for these mechanisms. Other relevant information such as potential energy, axial force data, angular position of unstable equilibria and transition values from bistability to monostability are also modelled. The results are verified through experimental torque and stability data for selected configurations of the mechanisms.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"382 2283","pages":"20240008"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of magnetically stabilized hinges for origami-inspired mechanisms.\",\"authors\":\"H T Pruett, P Klocke, L Howell, S Magleby\",\"doi\":\"10.1098/rsta.2024.0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Origami-inspired mechanisms provide opportunities for deployable systems, including reflectarray antennas. There is a need for approaches to deploy and stabilize such arrays. Magnetic mechanisms show promise for meeting those needs and how methods for modelling their behaviour would facilitate their design and analysis. We demonstrate the existence of bistability in select configurations of magnetically stabilized hinges and characterize their equilibrium positions as a function of parameters estimated from simulation data for these mechanisms. Other relevant information such as potential energy, axial force data, angular position of unstable equilibria and transition values from bistability to monostability are also modelled. The results are verified through experimental torque and stability data for selected configurations of the mechanisms.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"382 2283\",\"pages\":\"20240008\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0008\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0008","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

起源启发机制为包括反射阵列天线在内的可部署系统提供了机会。现在需要一种方法来部署和稳定这种阵列。磁性机构显示出满足这些需求的前景,而对其行为进行建模的方法将有助于它们的设计和分析。我们证明了在磁稳定铰链的选定配置中存在双稳态,并根据这些机制的模拟数据估算出的参数,描述了其平衡位置的特征。此外,还模拟了其他相关信息,如势能、轴向力数据、不稳定平衡的角度位置以及从双稳态到单稳态的过渡值。本文是主题 "折纸/叽里呱啦启发结构:从基础到应用 "的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of magnetically stabilized hinges for origami-inspired mechanisms.

Origami-inspired mechanisms provide opportunities for deployable systems, including reflectarray antennas. There is a need for approaches to deploy and stabilize such arrays. Magnetic mechanisms show promise for meeting those needs and how methods for modelling their behaviour would facilitate their design and analysis. We demonstrate the existence of bistability in select configurations of magnetically stabilized hinges and characterize their equilibrium positions as a function of parameters estimated from simulation data for these mechanisms. Other relevant information such as potential energy, axial force data, angular position of unstable equilibria and transition values from bistability to monostability are also modelled. The results are verified through experimental torque and stability data for selected configurations of the mechanisms.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信