Emanuele Diquattro, Jonathan Lettner, Marco Adriani, Robert Prill, Mikhail Salzmann, Roland Becker
{"title":"利用机器人内侧单室膝关节置换术实现高精度组件定位并恢复下肢对齐。","authors":"Emanuele Diquattro, Jonathan Lettner, Marco Adriani, Robert Prill, Mikhail Salzmann, Roland Becker","doi":"10.1002/ksa.12484","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Unicondylar arthroplasty was performed using robotic medial unicompartmental knee arthroplasty (R-mUKA) and gap-balancing instrumentation. Our hypothesis was that robotic unicondylar knee arthroplasty accurately restores component positioning and lower limb alignment when compared to preoperative planning with actual implantation throughout the range of knee motion due to proper knee balancing.</p><p><strong>Methods: </strong>Data were collected prospectively and were analysed for patients undergoing RM-UKA. A cemented UKA was implanted using the MAKO® robotic system. Lower limb alignment at 0°, 30°, 45°, 60° and 90° of flexion was recorded of the native knee, with the trial components in place and finally after component implantation. A spacer according to the femorotibial gap was introduced and the alignment was measured. The position of the final component was planned based on three-dimensional computed tomography images before making the bone cuts. The positioning of the femoral and tibial components was analysed in all three planes.</p><p><strong>Results: </strong>A total of 52 patients were included (mean age 66.3 ± 6.7 years; 34 males, 18 females). The difference in femoral component position after planning and final implantation was 0.04° ± 0.58° more valgus in the coronal plane (p = 0.326) and 0.6° ± 1.4° more flexion relative to the sagittal plane (p = 0.034). The tibial component was placed in the coronal plane in 0.3° ± 0.8° of more varus (p = 0.113) and in the sagittal plane in 0.6° ± 1.2° of more posterior tibial slope (p = 0.001). Lower limb alignment of the native knee in extension was 5.8° ± 2.6° of varus and changed to 3° ± 2.1° varus after UKA (p ≤ 0.01).</p><p><strong>Conclusion: </strong>R-mUKA helps to achieve the target of alignment and component position without any significant differences to the planning. Ligament balancing causes non-significant changes in component position. It allows optimal component position even for off-the-shelf implants respecting the patient's specific anatomy.</p><p><strong>Level of evidence: </strong>II.</p>","PeriodicalId":17880,"journal":{"name":"Knee Surgery, Sports Traumatology, Arthroscopy","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High accuracy of component positioning and restoration of lower limb alignment using robotic medial unicompartmental knee arthroplasty.\",\"authors\":\"Emanuele Diquattro, Jonathan Lettner, Marco Adriani, Robert Prill, Mikhail Salzmann, Roland Becker\",\"doi\":\"10.1002/ksa.12484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Unicondylar arthroplasty was performed using robotic medial unicompartmental knee arthroplasty (R-mUKA) and gap-balancing instrumentation. Our hypothesis was that robotic unicondylar knee arthroplasty accurately restores component positioning and lower limb alignment when compared to preoperative planning with actual implantation throughout the range of knee motion due to proper knee balancing.</p><p><strong>Methods: </strong>Data were collected prospectively and were analysed for patients undergoing RM-UKA. A cemented UKA was implanted using the MAKO® robotic system. Lower limb alignment at 0°, 30°, 45°, 60° and 90° of flexion was recorded of the native knee, with the trial components in place and finally after component implantation. A spacer according to the femorotibial gap was introduced and the alignment was measured. The position of the final component was planned based on three-dimensional computed tomography images before making the bone cuts. The positioning of the femoral and tibial components was analysed in all three planes.</p><p><strong>Results: </strong>A total of 52 patients were included (mean age 66.3 ± 6.7 years; 34 males, 18 females). The difference in femoral component position after planning and final implantation was 0.04° ± 0.58° more valgus in the coronal plane (p = 0.326) and 0.6° ± 1.4° more flexion relative to the sagittal plane (p = 0.034). The tibial component was placed in the coronal plane in 0.3° ± 0.8° of more varus (p = 0.113) and in the sagittal plane in 0.6° ± 1.2° of more posterior tibial slope (p = 0.001). Lower limb alignment of the native knee in extension was 5.8° ± 2.6° of varus and changed to 3° ± 2.1° varus after UKA (p ≤ 0.01).</p><p><strong>Conclusion: </strong>R-mUKA helps to achieve the target of alignment and component position without any significant differences to the planning. Ligament balancing causes non-significant changes in component position. It allows optimal component position even for off-the-shelf implants respecting the patient's specific anatomy.</p><p><strong>Level of evidence: </strong>II.</p>\",\"PeriodicalId\":17880,\"journal\":{\"name\":\"Knee Surgery, Sports Traumatology, Arthroscopy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knee Surgery, Sports Traumatology, Arthroscopy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/ksa.12484\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knee Surgery, Sports Traumatology, Arthroscopy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ksa.12484","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
High accuracy of component positioning and restoration of lower limb alignment using robotic medial unicompartmental knee arthroplasty.
Purpose: Unicondylar arthroplasty was performed using robotic medial unicompartmental knee arthroplasty (R-mUKA) and gap-balancing instrumentation. Our hypothesis was that robotic unicondylar knee arthroplasty accurately restores component positioning and lower limb alignment when compared to preoperative planning with actual implantation throughout the range of knee motion due to proper knee balancing.
Methods: Data were collected prospectively and were analysed for patients undergoing RM-UKA. A cemented UKA was implanted using the MAKO® robotic system. Lower limb alignment at 0°, 30°, 45°, 60° and 90° of flexion was recorded of the native knee, with the trial components in place and finally after component implantation. A spacer according to the femorotibial gap was introduced and the alignment was measured. The position of the final component was planned based on three-dimensional computed tomography images before making the bone cuts. The positioning of the femoral and tibial components was analysed in all three planes.
Results: A total of 52 patients were included (mean age 66.3 ± 6.7 years; 34 males, 18 females). The difference in femoral component position after planning and final implantation was 0.04° ± 0.58° more valgus in the coronal plane (p = 0.326) and 0.6° ± 1.4° more flexion relative to the sagittal plane (p = 0.034). The tibial component was placed in the coronal plane in 0.3° ± 0.8° of more varus (p = 0.113) and in the sagittal plane in 0.6° ± 1.2° of more posterior tibial slope (p = 0.001). Lower limb alignment of the native knee in extension was 5.8° ± 2.6° of varus and changed to 3° ± 2.1° varus after UKA (p ≤ 0.01).
Conclusion: R-mUKA helps to achieve the target of alignment and component position without any significant differences to the planning. Ligament balancing causes non-significant changes in component position. It allows optimal component position even for off-the-shelf implants respecting the patient's specific anatomy.
期刊介绍:
Few other areas of orthopedic surgery and traumatology have undergone such a dramatic evolution in the last 10 years as knee surgery, arthroscopy and sports traumatology. Ranked among the top 33% of journals in both Orthopedics and Sports Sciences, the goal of this European journal is to publish papers about innovative knee surgery, sports trauma surgery and arthroscopy. Each issue features a series of peer-reviewed articles that deal with diagnosis and management and with basic research. Each issue also contains at least one review article about an important clinical problem. Case presentations or short notes about technical innovations are also accepted for publication.
The articles cover all aspects of knee surgery and all types of sports trauma; in addition, epidemiology, diagnosis, treatment and prevention, and all types of arthroscopy (not only the knee but also the shoulder, elbow, wrist, hip, ankle, etc.) are addressed. Articles on new diagnostic techniques such as MRI and ultrasound and high-quality articles about the biomechanics of joints, muscles and tendons are included. Although this is largely a clinical journal, it is also open to basic research with clinical relevance.
Because the journal is supported by a distinguished European Editorial Board, assisted by an international Advisory Board, you can be assured that the journal maintains the highest standards.
Official Clinical Journal of the European Society of Sports Traumatology, Knee Surgery and Arthroscopy (ESSKA).