多中心整合磁共振放射组学、深度学习和临床指标,预测热消融后的肝细胞癌复发。

IF 4.2 3区 医学 Q2 ONCOLOGY
Journal of Hepatocellular Carcinoma Pub Date : 2024-10-02 eCollection Date: 2024-01-01 DOI:10.2147/JHC.S482760
Yandan Wang, Yong Zhang, Jincheng Xiao, Xiang Geng, Lujun Han, Junpeng Luo
{"title":"多中心整合磁共振放射组学、深度学习和临床指标,预测热消融后的肝细胞癌复发。","authors":"Yandan Wang, Yong Zhang, Jincheng Xiao, Xiang Geng, Lujun Han, Junpeng Luo","doi":"10.2147/JHC.S482760","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To develop and validate an innovative predictive model that integrates multisequence magnetic resonance (MR) radiomics, deep learning features, and clinical indicators to accurately predict the recurrence of hepatocellular carcinoma (HCC) after thermal ablation.</p><p><strong>Methods: </strong>This retrospective multicenter cohort study enrolled patients who were diagnosed with HCC and treated via thermal ablation. We extracted radiomic features from multisequence 3T MR images, analyzed these images using a 3D convolutional neural network (3D CNN), and incorporated clinical data into the model. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.</p><p><strong>Results: </strong>The study included 535 patients from three hospitals, comprising 462 males and 43 females. The RDC model, which stands for the Radiomics-Deep Learning-Clinical data model, demonstrated high predictive accuracy, achieving AUCs of 0.794 in the training set, 0.777 in the validation set, and 0.787 in the test set. Statistical analysis confirmed the model's robustness and the significant contribution of the integrated features to its predictive capabilities.</p><p><strong>Conclusion: </strong>The RDC model effectively predicts HCC recurrence after thermal ablation by synergistically combining advanced imaging analysis and clinical parameters. This study highlights the potential of such integrative approaches to enhance prognostic assessments in HCC patients and offers a promising tool for clinical decision-making.</p>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"11 ","pages":"1861-1874"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456269/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multicenter Integration of MR Radiomics, Deep Learning, and Clinical Indicators for Predicting Hepatocellular Carcinoma Recurrence After Thermal Ablation.\",\"authors\":\"Yandan Wang, Yong Zhang, Jincheng Xiao, Xiang Geng, Lujun Han, Junpeng Luo\",\"doi\":\"10.2147/JHC.S482760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To develop and validate an innovative predictive model that integrates multisequence magnetic resonance (MR) radiomics, deep learning features, and clinical indicators to accurately predict the recurrence of hepatocellular carcinoma (HCC) after thermal ablation.</p><p><strong>Methods: </strong>This retrospective multicenter cohort study enrolled patients who were diagnosed with HCC and treated via thermal ablation. We extracted radiomic features from multisequence 3T MR images, analyzed these images using a 3D convolutional neural network (3D CNN), and incorporated clinical data into the model. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.</p><p><strong>Results: </strong>The study included 535 patients from three hospitals, comprising 462 males and 43 females. The RDC model, which stands for the Radiomics-Deep Learning-Clinical data model, demonstrated high predictive accuracy, achieving AUCs of 0.794 in the training set, 0.777 in the validation set, and 0.787 in the test set. Statistical analysis confirmed the model's robustness and the significant contribution of the integrated features to its predictive capabilities.</p><p><strong>Conclusion: </strong>The RDC model effectively predicts HCC recurrence after thermal ablation by synergistically combining advanced imaging analysis and clinical parameters. This study highlights the potential of such integrative approaches to enhance prognostic assessments in HCC patients and offers a promising tool for clinical decision-making.</p>\",\"PeriodicalId\":15906,\"journal\":{\"name\":\"Journal of Hepatocellular Carcinoma\",\"volume\":\"11 \",\"pages\":\"1861-1874\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456269/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hepatocellular Carcinoma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JHC.S482760\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JHC.S482760","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:开发并验证一种创新的预测模型,该模型整合了多序列磁共振(MR)放射组学、深度学习特征和临床指标,可准确预测热消融术后肝细胞癌(HCC)的复发:这项回顾性多中心队列研究纳入了确诊为 HCC 并接受热消融治疗的患者。我们从多序列 3T 磁共振图像中提取了放射学特征,使用三维卷积神经网络(3D CNN)分析了这些图像,并将临床数据纳入模型。使用接收者操作特征曲线(ROC)的曲线下面积(AUC)对模型性能进行评估:研究对象包括三家医院的 535 名患者,其中男性 462 名,女性 43 名。RDC模型是放射组学-深度学习-临床数据模型的缩写,具有很高的预测准确性,训练集的AUC为0.794,验证集的AUC为0.777,测试集的AUC为0.787。统计分析证实了该模型的稳健性以及集成特征对其预测能力的显著贡献:RDC模型通过协同结合先进的成像分析和临床参数,有效预测了热消融后的HCC复发。这项研究强调了这种综合方法在加强 HCC 患者预后评估方面的潜力,并为临床决策提供了一种前景广阔的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multicenter Integration of MR Radiomics, Deep Learning, and Clinical Indicators for Predicting Hepatocellular Carcinoma Recurrence After Thermal Ablation.

Background: To develop and validate an innovative predictive model that integrates multisequence magnetic resonance (MR) radiomics, deep learning features, and clinical indicators to accurately predict the recurrence of hepatocellular carcinoma (HCC) after thermal ablation.

Methods: This retrospective multicenter cohort study enrolled patients who were diagnosed with HCC and treated via thermal ablation. We extracted radiomic features from multisequence 3T MR images, analyzed these images using a 3D convolutional neural network (3D CNN), and incorporated clinical data into the model. Model performance was evaluated using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve.

Results: The study included 535 patients from three hospitals, comprising 462 males and 43 females. The RDC model, which stands for the Radiomics-Deep Learning-Clinical data model, demonstrated high predictive accuracy, achieving AUCs of 0.794 in the training set, 0.777 in the validation set, and 0.787 in the test set. Statistical analysis confirmed the model's robustness and the significant contribution of the integrated features to its predictive capabilities.

Conclusion: The RDC model effectively predicts HCC recurrence after thermal ablation by synergistically combining advanced imaging analysis and clinical parameters. This study highlights the potential of such integrative approaches to enhance prognostic assessments in HCC patients and offers a promising tool for clinical decision-making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
2.40%
发文量
108
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信