Judit Prat-Duran , Isabela Bastos Binotti Abreu De Araujo , Nina Juste , Estéfano Pinilla , Francisco J. Rios , Augusto C. Montezano , Rhian M. Touyz , Ulf Simonsen , Rikke Nørregaard , Niels Henrik Buus
{"title":"在单侧输尿管梗阻小鼠模型中对转谷氨酰胺酶 2 进行药理调节。","authors":"Judit Prat-Duran , Isabela Bastos Binotti Abreu De Araujo , Nina Juste , Estéfano Pinilla , Francisco J. Rios , Augusto C. Montezano , Rhian M. Touyz , Ulf Simonsen , Rikke Nørregaard , Niels Henrik Buus","doi":"10.1016/j.ejphar.2024.177037","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Transglutaminase 2 (TG2) is a multifunctional enzyme involved in fibrosis by promoting transforming-growth-factor-β1 and crosslinking of extracellular matrix proteins. These functions are dependent on the open conformation, while the closed state of TG2 can induce vasodilation. We explored the putative protective role of TG2 in its closed state on development of renal fibrosis and blood pressure (BP) regulation.</div></div><div><h3>Methods</h3><div>We studied the unilateral ureteral obstruction (UUO) mouse model treated with LDN27219, which promotes the closed conformation of TG2. Mice were subjected to 7 days UUO or sham operation and treated with vehicle (n = 10), LDN27219 (15 mg/kg/12 h, n = 9) or candesartan (5 mg/kg/day, n = 10) as a clinically comparator. Renal expression of TG2 and pro-fibrotic mediators were evaluated by Western blotting, qPCR and histology, and BP by tail-cuff measurements.</div></div><div><h3>Results</h3><div>Obstructed kidneys showed increased mRNA and protein expression of fibronectin, collagen 3α1 (Col3α1), α-smooth muscle actin and collagen staining. Despite increased renal TG2 mRNA, protein expression was reduced in all UUO groups, but with increased transamidase activity in the vehicle and candesartan groups. LDN27219 reduced mRNA expression of fibronectin and Col3α1, but their protein expression remained unchanged. In contrast to LDN27219, candesartan lowered BP without affecting expression of pro-fibrotic biomarkers.</div></div><div><h3>Conclusion</h3><div>Renal TG2 mRNA and protein expression levels seem dissociated, with transamidase activity being increased. LDN27219 influences kidney pro-fibrotic markers at the mRNA level and attenuates transamidase activity but without affecting collagen content or BP. Our findings suggest that TG2 in its closed conformation has anti-fibrotic effects at the molecular level.</div></div>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":"984 ","pages":"Article 177037"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacological modulation of transglutaminase 2 in the unilateral ureteral obstruction mouse model\",\"authors\":\"Judit Prat-Duran , Isabela Bastos Binotti Abreu De Araujo , Nina Juste , Estéfano Pinilla , Francisco J. Rios , Augusto C. Montezano , Rhian M. Touyz , Ulf Simonsen , Rikke Nørregaard , Niels Henrik Buus\",\"doi\":\"10.1016/j.ejphar.2024.177037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Transglutaminase 2 (TG2) is a multifunctional enzyme involved in fibrosis by promoting transforming-growth-factor-β1 and crosslinking of extracellular matrix proteins. These functions are dependent on the open conformation, while the closed state of TG2 can induce vasodilation. We explored the putative protective role of TG2 in its closed state on development of renal fibrosis and blood pressure (BP) regulation.</div></div><div><h3>Methods</h3><div>We studied the unilateral ureteral obstruction (UUO) mouse model treated with LDN27219, which promotes the closed conformation of TG2. Mice were subjected to 7 days UUO or sham operation and treated with vehicle (n = 10), LDN27219 (15 mg/kg/12 h, n = 9) or candesartan (5 mg/kg/day, n = 10) as a clinically comparator. Renal expression of TG2 and pro-fibrotic mediators were evaluated by Western blotting, qPCR and histology, and BP by tail-cuff measurements.</div></div><div><h3>Results</h3><div>Obstructed kidneys showed increased mRNA and protein expression of fibronectin, collagen 3α1 (Col3α1), α-smooth muscle actin and collagen staining. Despite increased renal TG2 mRNA, protein expression was reduced in all UUO groups, but with increased transamidase activity in the vehicle and candesartan groups. LDN27219 reduced mRNA expression of fibronectin and Col3α1, but their protein expression remained unchanged. In contrast to LDN27219, candesartan lowered BP without affecting expression of pro-fibrotic biomarkers.</div></div><div><h3>Conclusion</h3><div>Renal TG2 mRNA and protein expression levels seem dissociated, with transamidase activity being increased. LDN27219 influences kidney pro-fibrotic markers at the mRNA level and attenuates transamidase activity but without affecting collagen content or BP. Our findings suggest that TG2 in its closed conformation has anti-fibrotic effects at the molecular level.</div></div>\",\"PeriodicalId\":12004,\"journal\":{\"name\":\"European journal of pharmacology\",\"volume\":\"984 \",\"pages\":\"Article 177037\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European journal of pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014299924007271\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014299924007271","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Pharmacological modulation of transglutaminase 2 in the unilateral ureteral obstruction mouse model
Background
Transglutaminase 2 (TG2) is a multifunctional enzyme involved in fibrosis by promoting transforming-growth-factor-β1 and crosslinking of extracellular matrix proteins. These functions are dependent on the open conformation, while the closed state of TG2 can induce vasodilation. We explored the putative protective role of TG2 in its closed state on development of renal fibrosis and blood pressure (BP) regulation.
Methods
We studied the unilateral ureteral obstruction (UUO) mouse model treated with LDN27219, which promotes the closed conformation of TG2. Mice were subjected to 7 days UUO or sham operation and treated with vehicle (n = 10), LDN27219 (15 mg/kg/12 h, n = 9) or candesartan (5 mg/kg/day, n = 10) as a clinically comparator. Renal expression of TG2 and pro-fibrotic mediators were evaluated by Western blotting, qPCR and histology, and BP by tail-cuff measurements.
Results
Obstructed kidneys showed increased mRNA and protein expression of fibronectin, collagen 3α1 (Col3α1), α-smooth muscle actin and collagen staining. Despite increased renal TG2 mRNA, protein expression was reduced in all UUO groups, but with increased transamidase activity in the vehicle and candesartan groups. LDN27219 reduced mRNA expression of fibronectin and Col3α1, but their protein expression remained unchanged. In contrast to LDN27219, candesartan lowered BP without affecting expression of pro-fibrotic biomarkers.
Conclusion
Renal TG2 mRNA and protein expression levels seem dissociated, with transamidase activity being increased. LDN27219 influences kidney pro-fibrotic markers at the mRNA level and attenuates transamidase activity but without affecting collagen content or BP. Our findings suggest that TG2 in its closed conformation has anti-fibrotic effects at the molecular level.
期刊介绍:
The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems.
The scope includes:
Behavioural pharmacology
Neuropharmacology and analgesia
Cardiovascular pharmacology
Pulmonary, gastrointestinal and urogenital pharmacology
Endocrine pharmacology
Immunopharmacology and inflammation
Molecular and cellular pharmacology
Regenerative pharmacology
Biologicals and biotherapeutics
Translational pharmacology
Nutriceutical pharmacology.