{"title":"利用组织隔离肿瘤灌注系统对多柔比星包裹聚合物胶束进行肿瘤药代动力学-药效学模拟","authors":"Shugo Yamashita, Shunsuke Kimura, Akiko Kiriyama","doi":"10.1021/acs.molpharmaceut.4c00729","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacokinetic (PK) elucidation of polymeric micelles delivering anticancer drugs is crucial for accurate antitumor PK-pharmacodynamic (PK-PD) simulations. Particularly, establishing a methodology to quantify the tumor inflow and outflow of anticancer drugs encapsulated in polymeric micelles is an essential challenge. General tumor biodistribution experiments are disadvantageous in that inflow quantification is easy, but outflow quantification is challenging. We addressed this issue by proposing a quantification method that combines a tissue-isolated tumor perfusion system with microdialysis. This method aims to determine tumoral drug inflow and outflow by quantifying the drugs released from the polymeric micelles via a tumor-embedded microdialysis probe and perfusate, respectively. Furthermore, we evaluated the feasibility of this method by perfusing pH-sensitive polyethylene glycol-poly(aspartate-hydrazone-doxorubicin/phenylalanine)n (PPDF-Hyd-DOX) in a tissue-isolated tumor perfusion system, and we quantified tumor inflow and outflow released DOX. Based on the quantitative results, we performed compartmental analyses by incorporating the gamma-distributed delay function and calculated the PK rate constants. These parameters were input into a tumor-bearing rat compartment model for ex vivo-in vivo extrapolation (EVIVE) of the rat plasma PPDF-Hyd-DOX concentrations and simulated intratumorally released DOX concentrations. The simulation profiles demonstrated a good fit with the Walker 256 intratumoral released DOX concentration profiles previously reported. This EVIVE-PK model was coupled with the threshold natural-growth tumor PD model, and PK-PD analysis was performed. This model exhibited a better fit to the tumor weight profile of Walker 256-bearing rats treated with PPDF-Hyd-DOX than that of our previously reported PK-PD model. Thus, EVIVE, based on a tissue-isolated tumor perfusion system with microdialysis, is a promising approach for the PK-PD simulation of polymeric micelle anticancer therapy.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":"5736-5748"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tumoral Pharmacokinetic-Pharmacodynamic Simulation of Doxorubicin-Encapsulated Polymeric Micelles Using a Tissue-Isolated Tumor Perfusion System.\",\"authors\":\"Shugo Yamashita, Shunsuke Kimura, Akiko Kiriyama\",\"doi\":\"10.1021/acs.molpharmaceut.4c00729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmacokinetic (PK) elucidation of polymeric micelles delivering anticancer drugs is crucial for accurate antitumor PK-pharmacodynamic (PK-PD) simulations. Particularly, establishing a methodology to quantify the tumor inflow and outflow of anticancer drugs encapsulated in polymeric micelles is an essential challenge. General tumor biodistribution experiments are disadvantageous in that inflow quantification is easy, but outflow quantification is challenging. We addressed this issue by proposing a quantification method that combines a tissue-isolated tumor perfusion system with microdialysis. This method aims to determine tumoral drug inflow and outflow by quantifying the drugs released from the polymeric micelles via a tumor-embedded microdialysis probe and perfusate, respectively. Furthermore, we evaluated the feasibility of this method by perfusing pH-sensitive polyethylene glycol-poly(aspartate-hydrazone-doxorubicin/phenylalanine)n (PPDF-Hyd-DOX) in a tissue-isolated tumor perfusion system, and we quantified tumor inflow and outflow released DOX. Based on the quantitative results, we performed compartmental analyses by incorporating the gamma-distributed delay function and calculated the PK rate constants. These parameters were input into a tumor-bearing rat compartment model for ex vivo-in vivo extrapolation (EVIVE) of the rat plasma PPDF-Hyd-DOX concentrations and simulated intratumorally released DOX concentrations. The simulation profiles demonstrated a good fit with the Walker 256 intratumoral released DOX concentration profiles previously reported. This EVIVE-PK model was coupled with the threshold natural-growth tumor PD model, and PK-PD analysis was performed. This model exhibited a better fit to the tumor weight profile of Walker 256-bearing rats treated with PPDF-Hyd-DOX than that of our previously reported PK-PD model. Thus, EVIVE, based on a tissue-isolated tumor perfusion system with microdialysis, is a promising approach for the PK-PD simulation of polymeric micelle anticancer therapy.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"5736-5748\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00729\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00729","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Tumoral Pharmacokinetic-Pharmacodynamic Simulation of Doxorubicin-Encapsulated Polymeric Micelles Using a Tissue-Isolated Tumor Perfusion System.
Pharmacokinetic (PK) elucidation of polymeric micelles delivering anticancer drugs is crucial for accurate antitumor PK-pharmacodynamic (PK-PD) simulations. Particularly, establishing a methodology to quantify the tumor inflow and outflow of anticancer drugs encapsulated in polymeric micelles is an essential challenge. General tumor biodistribution experiments are disadvantageous in that inflow quantification is easy, but outflow quantification is challenging. We addressed this issue by proposing a quantification method that combines a tissue-isolated tumor perfusion system with microdialysis. This method aims to determine tumoral drug inflow and outflow by quantifying the drugs released from the polymeric micelles via a tumor-embedded microdialysis probe and perfusate, respectively. Furthermore, we evaluated the feasibility of this method by perfusing pH-sensitive polyethylene glycol-poly(aspartate-hydrazone-doxorubicin/phenylalanine)n (PPDF-Hyd-DOX) in a tissue-isolated tumor perfusion system, and we quantified tumor inflow and outflow released DOX. Based on the quantitative results, we performed compartmental analyses by incorporating the gamma-distributed delay function and calculated the PK rate constants. These parameters were input into a tumor-bearing rat compartment model for ex vivo-in vivo extrapolation (EVIVE) of the rat plasma PPDF-Hyd-DOX concentrations and simulated intratumorally released DOX concentrations. The simulation profiles demonstrated a good fit with the Walker 256 intratumoral released DOX concentration profiles previously reported. This EVIVE-PK model was coupled with the threshold natural-growth tumor PD model, and PK-PD analysis was performed. This model exhibited a better fit to the tumor weight profile of Walker 256-bearing rats treated with PPDF-Hyd-DOX than that of our previously reported PK-PD model. Thus, EVIVE, based on a tissue-isolated tumor perfusion system with microdialysis, is a promising approach for the PK-PD simulation of polymeric micelle anticancer therapy.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.