将矩阵分解为二次矩阵的换元乘积

IF 0.9 4区 数学 Q2 MATHEMATICS
M. H. Bien, M. Ramezan-Nassab, L. Q. Truong
{"title":"将矩阵分解为二次矩阵的换元乘积","authors":"M. H. Bien, M. Ramezan-Nassab, L. Q. Truong","doi":"10.1080/03081087.2024.2411429","DOIUrl":null,"url":null,"abstract":"Let F be a field, p(x) be a quadratic polynomial in F[x] with a non-zero constant term, and n≥2 be a positive integer. We say that T∈Mn(F) is p(x)-quadratic if p(T)=0. In this paper, given A∈SLn(F)...","PeriodicalId":49905,"journal":{"name":"Linear & Multilinear Algebra","volume":"43 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of matrices into products of commutators of quadratic matrices\",\"authors\":\"M. H. Bien, M. Ramezan-Nassab, L. Q. Truong\",\"doi\":\"10.1080/03081087.2024.2411429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let F be a field, p(x) be a quadratic polynomial in F[x] with a non-zero constant term, and n≥2 be a positive integer. We say that T∈Mn(F) is p(x)-quadratic if p(T)=0. In this paper, given A∈SLn(F)...\",\"PeriodicalId\":49905,\"journal\":{\"name\":\"Linear & Multilinear Algebra\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear & Multilinear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03081087.2024.2411429\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear & Multilinear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03081087.2024.2411429","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 F 是一个域,p(x) 是 F[x] 中具有非零常数项的二次多项式,n≥2 是一个正整数。如果 p(T)=0 ,我们说 T∈Mn(F) 是 p(x)-quadratic 的。在本文中,给定 A∈SLn(F)...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decomposition of matrices into products of commutators of quadratic matrices
Let F be a field, p(x) be a quadratic polynomial in F[x] with a non-zero constant term, and n≥2 be a positive integer. We say that T∈Mn(F) is p(x)-quadratic if p(T)=0. In this paper, given A∈SLn(F)...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
18.20%
发文量
175
审稿时长
4-8 weeks
期刊介绍: Linear and Multilinear Algebra publishes high-quality original research papers that advance the study of linear and multilinear algebra, or that include novel applications of linear and multilinear algebra to other branches of mathematics and science. Linear and Multilinear Algebra also publishes research problems, survey articles and book reviews of interest to researchers in linear and multilinear algebra. Appropriate areas include, but are not limited to: spaces over fields or rings tensor algebras nonnegative matrices inequalities in linear algebra combinatorial matrix theory numerical linear algebra representation theory Lie theory invariant theory and operator theory The audience for Linear and Multilinear Algebra includes both industrial and academic mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信