骨骼肌干细胞的增殖和分化在生物反应器中得到增强。

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wei-Hsuan Lin, Chung-Yuh Tzeng, Fan-Che Kao, Chia-Wen Tsao, Ning Li, Chuan-Che Wu, Sheng-Huei Lee, Kai-Fan Huang, Wei-Wen Hu, Shen-Liang Chen
{"title":"骨骼肌干细胞的增殖和分化在生物反应器中得到增强。","authors":"Wei-Hsuan Lin, Chung-Yuh Tzeng, Fan-Che Kao, Chia-Wen Tsao, Ning Li, Chuan-Che Wu, Sheng-Huei Lee, Kai-Fan Huang, Wei-Wen Hu, Shen-Liang Chen","doi":"10.1002/bit.28857","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle (SKM) is the largest organ in mammalian body and it can repair damages by using the residential myogenic stem cells (MuSC), but this repairing capacity reduces with age and in some genetic muscular dystrophy. Under these circumstances, artificial amplification of autologous MuSC in vitro might be necessary to repair the damaged SKM. The amplification of MuSC is highly dependent on myogenic signals, such as sonic hedgehog (Shh), Wnt3a, and fibroblast growth factors, so formulating an optimum myogenic kit composed of specific myogenic signals might increase the proliferation and differentiation of MuSC efficiently. In this study, various myogenic signals have been tested on C2C12 myoblasts and primary MuSC, and a myogenic kit consists of insulin, lithium chloride, T<sub>3</sub>, and retinoic acid has been formulated, and we found it significantly increased the fusion index and MHC expression level of both C2C12 and MuSC myotubes. A novel bioreactor providing cyclic stretching (CS) and electrical stimulation (ES) has been fabricated to enhance the myogenic differentiation of both C2C12 and MuSC. We further found that coating the bioreactor substratum with collagen gave the best effect on proliferation and differentiation of MuSC. Furthermore, combining the collagen coating and physical stimuli (CS + ES) in the bioreactor can generate more proliferative primary MuSC cells. Our results have demonstrated that the combination of myogenic kit and bioreactor can provide environment for efficient MuSC proliferation and differentiation. These MuSC and mature myotubes amplified in the bioreactor might be useful for clinical grafting into damaged SKM in the future.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The proliferation and differentiation of skeletal muscle stem cells are enhanced in a bioreactor.\",\"authors\":\"Wei-Hsuan Lin, Chung-Yuh Tzeng, Fan-Che Kao, Chia-Wen Tsao, Ning Li, Chuan-Che Wu, Sheng-Huei Lee, Kai-Fan Huang, Wei-Wen Hu, Shen-Liang Chen\",\"doi\":\"10.1002/bit.28857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle (SKM) is the largest organ in mammalian body and it can repair damages by using the residential myogenic stem cells (MuSC), but this repairing capacity reduces with age and in some genetic muscular dystrophy. Under these circumstances, artificial amplification of autologous MuSC in vitro might be necessary to repair the damaged SKM. The amplification of MuSC is highly dependent on myogenic signals, such as sonic hedgehog (Shh), Wnt3a, and fibroblast growth factors, so formulating an optimum myogenic kit composed of specific myogenic signals might increase the proliferation and differentiation of MuSC efficiently. In this study, various myogenic signals have been tested on C2C12 myoblasts and primary MuSC, and a myogenic kit consists of insulin, lithium chloride, T<sub>3</sub>, and retinoic acid has been formulated, and we found it significantly increased the fusion index and MHC expression level of both C2C12 and MuSC myotubes. A novel bioreactor providing cyclic stretching (CS) and electrical stimulation (ES) has been fabricated to enhance the myogenic differentiation of both C2C12 and MuSC. We further found that coating the bioreactor substratum with collagen gave the best effect on proliferation and differentiation of MuSC. Furthermore, combining the collagen coating and physical stimuli (CS + ES) in the bioreactor can generate more proliferative primary MuSC cells. Our results have demonstrated that the combination of myogenic kit and bioreactor can provide environment for efficient MuSC proliferation and differentiation. These MuSC and mature myotubes amplified in the bioreactor might be useful for clinical grafting into damaged SKM in the future.</p>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/bit.28857\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28857","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌(SKM)是哺乳动物体内最大的器官,它可以利用体内的肌原干细胞(MuSC)修复损伤,但这种修复能力会随着年龄的增长和某些遗传性肌肉萎缩症的发生而减弱。在这种情况下,可能需要在体外人工扩增自体MuSC来修复受损的SKM。MuSC的扩增高度依赖于致肌信号,如声波刺猬(Shh)、Wnt3a和成纤维细胞生长因子,因此配制由特定致肌信号组成的最佳致肌试剂盒可能会有效地增加MuSC的增殖和分化。本研究在C2C12肌母细胞和原代MuSC上测试了各种致肌信号,并配制了由胰岛素、氯化锂、T3和维甲酸组成的致肌试剂盒,结果发现它能显著提高C2C12和MuSC肌管的融合指数和MHC表达水平。我们制作了一种新型生物反应器,提供循环拉伸(CS)和电刺激(ES),以增强 C2C12 和 MuSC 的成肌分化。我们进一步发现,在生物反应器的基底上涂覆胶原蛋白对 MuSC 的增殖和分化效果最佳。此外,在生物反应器中结合使用胶原涂层和物理刺激(CS + ES)可以产生更多增殖的原代MuSC细胞。我们的研究结果表明,成肌试剂盒与生物反应器的结合可为成肌细胞的增殖和分化提供有效的环境。这些在生物反应器中扩增的MuSC和成熟的肌小管将来可能会用于临床移植到受损的SKM中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The proliferation and differentiation of skeletal muscle stem cells are enhanced in a bioreactor.

Skeletal muscle (SKM) is the largest organ in mammalian body and it can repair damages by using the residential myogenic stem cells (MuSC), but this repairing capacity reduces with age and in some genetic muscular dystrophy. Under these circumstances, artificial amplification of autologous MuSC in vitro might be necessary to repair the damaged SKM. The amplification of MuSC is highly dependent on myogenic signals, such as sonic hedgehog (Shh), Wnt3a, and fibroblast growth factors, so formulating an optimum myogenic kit composed of specific myogenic signals might increase the proliferation and differentiation of MuSC efficiently. In this study, various myogenic signals have been tested on C2C12 myoblasts and primary MuSC, and a myogenic kit consists of insulin, lithium chloride, T3, and retinoic acid has been formulated, and we found it significantly increased the fusion index and MHC expression level of both C2C12 and MuSC myotubes. A novel bioreactor providing cyclic stretching (CS) and electrical stimulation (ES) has been fabricated to enhance the myogenic differentiation of both C2C12 and MuSC. We further found that coating the bioreactor substratum with collagen gave the best effect on proliferation and differentiation of MuSC. Furthermore, combining the collagen coating and physical stimuli (CS + ES) in the bioreactor can generate more proliferative primary MuSC cells. Our results have demonstrated that the combination of myogenic kit and bioreactor can provide environment for efficient MuSC proliferation and differentiation. These MuSC and mature myotubes amplified in the bioreactor might be useful for clinical grafting into damaged SKM in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信