{"title":"艾地骨化醇通过SOCE促进Treg细胞分化,从而改善糖尿病骨质疏松症和糖脂代谢紊乱。","authors":"Yujun Jiang, Ruihan Gao, Qiaohui Ying, Xiaolin Li, Yaling Dai, Aimei Song, Hongrui Liu, Tomoka Hasegawa, Minqi Li","doi":"10.1007/s00018-024-05453-3","DOIUrl":null,"url":null,"abstract":"<p><p>Active vitamin D, known for its role in promoting osteoporosis, has immunomodulatory effects according to the latest evidence. Eldecalcitol (ED-71) is a representative of the third-generation novel active vitamin D analogs, and its specific immunological mechanisms in ameliorating diabetic osteoporosis remain unclear. We herein evaluated the therapeutic effects of ED-71 in the context of type 2 diabetes mellitus (T2DM), delving into its underlying mechanisms. In a T2DM mouse model, ED-71 attenuated bone loss and marrow adiposity. Simultaneously, it rectified imbalanced glucose homeostasis and dyslipidemia, ameliorated pancreatic β-cell damage and hepatic glycolipid metabolism disorder. Subsequently, in mice injected with the Treg cell-depleting agent CD25, we observed that the beneficial effects of ED-71 mentioned earlier were partially contingent on the Treg subsets ratio. Mechanistically, ED-71 promoted the differentiation of CD4<sup>+</sup> T cells into Treg subsets, facilitating Ca<sup>2+</sup> influx and the expression of ORAI1 and STIM1, pivotal proteins in store-operated Ca<sup>2+</sup> entry (SOCE). The SOCE inhibitor, 2-APB, partially attenuated the positive effects of ED-71 observed in the above results. Overall, ED-71 regulates SOCE-mediated Treg cell differentiation, accomplishing the dual purpose of simultaneously ameliorating diabetic osteoporosis and glucolipid metabolic disorders, showcasing its potential in osteoimmunity therapy and interventions for diseases involving SOCE.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"81 1","pages":"423"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456014/pdf/","citationCount":"0","resultStr":"{\"title\":\"Eldecalcitol ameliorates diabetic osteoporosis and glucolipid metabolic disorder by promoting Treg cell differentiation through SOCE.\",\"authors\":\"Yujun Jiang, Ruihan Gao, Qiaohui Ying, Xiaolin Li, Yaling Dai, Aimei Song, Hongrui Liu, Tomoka Hasegawa, Minqi Li\",\"doi\":\"10.1007/s00018-024-05453-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Active vitamin D, known for its role in promoting osteoporosis, has immunomodulatory effects according to the latest evidence. Eldecalcitol (ED-71) is a representative of the third-generation novel active vitamin D analogs, and its specific immunological mechanisms in ameliorating diabetic osteoporosis remain unclear. We herein evaluated the therapeutic effects of ED-71 in the context of type 2 diabetes mellitus (T2DM), delving into its underlying mechanisms. In a T2DM mouse model, ED-71 attenuated bone loss and marrow adiposity. Simultaneously, it rectified imbalanced glucose homeostasis and dyslipidemia, ameliorated pancreatic β-cell damage and hepatic glycolipid metabolism disorder. Subsequently, in mice injected with the Treg cell-depleting agent CD25, we observed that the beneficial effects of ED-71 mentioned earlier were partially contingent on the Treg subsets ratio. Mechanistically, ED-71 promoted the differentiation of CD4<sup>+</sup> T cells into Treg subsets, facilitating Ca<sup>2+</sup> influx and the expression of ORAI1 and STIM1, pivotal proteins in store-operated Ca<sup>2+</sup> entry (SOCE). The SOCE inhibitor, 2-APB, partially attenuated the positive effects of ED-71 observed in the above results. Overall, ED-71 regulates SOCE-mediated Treg cell differentiation, accomplishing the dual purpose of simultaneously ameliorating diabetic osteoporosis and glucolipid metabolic disorders, showcasing its potential in osteoimmunity therapy and interventions for diseases involving SOCE.</p>\",\"PeriodicalId\":10007,\"journal\":{\"name\":\"Cellular and Molecular Life Sciences\",\"volume\":\"81 1\",\"pages\":\"423\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456014/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00018-024-05453-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-024-05453-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Eldecalcitol ameliorates diabetic osteoporosis and glucolipid metabolic disorder by promoting Treg cell differentiation through SOCE.
Active vitamin D, known for its role in promoting osteoporosis, has immunomodulatory effects according to the latest evidence. Eldecalcitol (ED-71) is a representative of the third-generation novel active vitamin D analogs, and its specific immunological mechanisms in ameliorating diabetic osteoporosis remain unclear. We herein evaluated the therapeutic effects of ED-71 in the context of type 2 diabetes mellitus (T2DM), delving into its underlying mechanisms. In a T2DM mouse model, ED-71 attenuated bone loss and marrow adiposity. Simultaneously, it rectified imbalanced glucose homeostasis and dyslipidemia, ameliorated pancreatic β-cell damage and hepatic glycolipid metabolism disorder. Subsequently, in mice injected with the Treg cell-depleting agent CD25, we observed that the beneficial effects of ED-71 mentioned earlier were partially contingent on the Treg subsets ratio. Mechanistically, ED-71 promoted the differentiation of CD4+ T cells into Treg subsets, facilitating Ca2+ influx and the expression of ORAI1 and STIM1, pivotal proteins in store-operated Ca2+ entry (SOCE). The SOCE inhibitor, 2-APB, partially attenuated the positive effects of ED-71 observed in the above results. Overall, ED-71 regulates SOCE-mediated Treg cell differentiation, accomplishing the dual purpose of simultaneously ameliorating diabetic osteoporosis and glucolipid metabolic disorders, showcasing its potential in osteoimmunity therapy and interventions for diseases involving SOCE.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered