利用机器学习了解精神分裂症、双相情感障碍和社区中的社会隔离和孤独感。

IF 3 Q2 PSYCHIATRY
Samuel J Abplanalp, Michael F Green, Jonathan K Wynn, Naomi I Eisenberger, William P Horan, Junghee Lee, Amanda McCleery, David J Miklowitz, L Felice Reddy, Eric A Reavis
{"title":"利用机器学习了解精神分裂症、双相情感障碍和社区中的社会隔离和孤独感。","authors":"Samuel J Abplanalp, Michael F Green, Jonathan K Wynn, Naomi I Eisenberger, William P Horan, Junghee Lee, Amanda McCleery, David J Miklowitz, L Felice Reddy, Eric A Reavis","doi":"10.1038/s41537-024-00511-y","DOIUrl":null,"url":null,"abstract":"<p><p>Social disconnection, including objective social isolation and subjective loneliness, is linked to substantial health risks. Yet, little is known about the predictors of social disconnection in individuals with mental illness. Here, we used machine learning to identify predictors of social isolation and loneliness in schizophrenia (N = 72), a psychiatric condition associated with social disconnection. For comparison, we also included two other groups: a psychiatric comparison sample of bipolar disorder (N = 48) and a community sample enriched for social isolation (N = 151). We fitted statistical models of social isolation and loneliness within and across groups. Each model included five candidate predictors: social avoidance motivation, depression, nonsocial cognition, social anhedonia, and social cognition. The results showed that social anhedonia explained unique variance in social isolation and loneliness in all samples, suggesting that it contributes to social isolation and loneliness broadly. However, nonsocial cognition explained unique variance in social isolation only within schizophrenia. Thus, social anhedonia could be a potential intervention target across populations, whereas nonsocial cognition may play a unique role in determining social disconnection in schizophrenia.</p>","PeriodicalId":74758,"journal":{"name":"Schizophrenia (Heidelberg, Germany)","volume":"10 1","pages":"88"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using machine learning to understand social isolation and loneliness in schizophrenia, bipolar disorder, and the community.\",\"authors\":\"Samuel J Abplanalp, Michael F Green, Jonathan K Wynn, Naomi I Eisenberger, William P Horan, Junghee Lee, Amanda McCleery, David J Miklowitz, L Felice Reddy, Eric A Reavis\",\"doi\":\"10.1038/s41537-024-00511-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Social disconnection, including objective social isolation and subjective loneliness, is linked to substantial health risks. Yet, little is known about the predictors of social disconnection in individuals with mental illness. Here, we used machine learning to identify predictors of social isolation and loneliness in schizophrenia (N = 72), a psychiatric condition associated with social disconnection. For comparison, we also included two other groups: a psychiatric comparison sample of bipolar disorder (N = 48) and a community sample enriched for social isolation (N = 151). We fitted statistical models of social isolation and loneliness within and across groups. Each model included five candidate predictors: social avoidance motivation, depression, nonsocial cognition, social anhedonia, and social cognition. The results showed that social anhedonia explained unique variance in social isolation and loneliness in all samples, suggesting that it contributes to social isolation and loneliness broadly. However, nonsocial cognition explained unique variance in social isolation only within schizophrenia. Thus, social anhedonia could be a potential intervention target across populations, whereas nonsocial cognition may play a unique role in determining social disconnection in schizophrenia.</p>\",\"PeriodicalId\":74758,\"journal\":{\"name\":\"Schizophrenia (Heidelberg, Germany)\",\"volume\":\"10 1\",\"pages\":\"88\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11455897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Schizophrenia (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41537-024-00511-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Schizophrenia (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41537-024-00511-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

摘要

社会隔离,包括客观上的社会孤立和主观上的孤独感,与巨大的健康风险有关。然而,人们对精神疾病患者社会隔离的预测因素知之甚少。在这里,我们使用机器学习来识别精神分裂症患者(72 人)的社会隔离和孤独感的预测因素,精神分裂症是一种与社会隔离相关的精神疾病。为了进行比较,我们还纳入了另外两组人:双相情感障碍的精神病对比样本(48 人)和社会隔离的社区样本(151 人)。我们建立了组内和组间社会隔离和孤独感的统计模型。每个模型都包括五个候选预测因子:社交回避动机、抑郁、非社交认知、社交厌恶和社交认知。结果显示,在所有样本中,社会失乐症都能解释社会隔离和孤独感的独特变异,这表明社会失乐症广泛地导致了社会隔离和孤独感。然而,非社会认知只能解释精神分裂症患者社会隔离的独特差异。因此,社会性失乐症可以成为不同人群的潜在干预目标,而非社会性认知则可能在精神分裂症患者的社会隔离中发挥独特的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using machine learning to understand social isolation and loneliness in schizophrenia, bipolar disorder, and the community.

Social disconnection, including objective social isolation and subjective loneliness, is linked to substantial health risks. Yet, little is known about the predictors of social disconnection in individuals with mental illness. Here, we used machine learning to identify predictors of social isolation and loneliness in schizophrenia (N = 72), a psychiatric condition associated with social disconnection. For comparison, we also included two other groups: a psychiatric comparison sample of bipolar disorder (N = 48) and a community sample enriched for social isolation (N = 151). We fitted statistical models of social isolation and loneliness within and across groups. Each model included five candidate predictors: social avoidance motivation, depression, nonsocial cognition, social anhedonia, and social cognition. The results showed that social anhedonia explained unique variance in social isolation and loneliness in all samples, suggesting that it contributes to social isolation and loneliness broadly. However, nonsocial cognition explained unique variance in social isolation only within schizophrenia. Thus, social anhedonia could be a potential intervention target across populations, whereas nonsocial cognition may play a unique role in determining social disconnection in schizophrenia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信