Taichang Mu , Yongsheng Lin , Huili Pu , Nemat O. Keyhani , Yuxiao Dang , Huajun Lv , Zhiying Zhao , Zhiang Heng , Ziyi Wu , Chengjie Xiong , Longbing Lin , Yuxi Chen , Hailan Su , Xiayu Guan , Junzhi Qiu
{"title":"Schizoparmaceae 科及其相关科(Diaporthales, Ascomycota)的分子系统发育和进化分异及生物地理学估计。","authors":"Taichang Mu , Yongsheng Lin , Huili Pu , Nemat O. Keyhani , Yuxiao Dang , Huajun Lv , Zhiying Zhao , Zhiang Heng , Ziyi Wu , Chengjie Xiong , Longbing Lin , Yuxi Chen , Hailan Su , Xiayu Guan , Junzhi Qiu","doi":"10.1016/j.ympev.2024.108211","DOIUrl":null,"url":null,"abstract":"<div><div>The Diaporthales includes 32 families, many of which are important plant pathogens, endophytes and saprobes, e.g., members of the families Pseudoplagiostomataceae, Pyrisporaceae and Schizoparmaceae. Nucleotide sequences derived from five genetic loci including: ITS, LSU, TEF1-α, TUB2 and RPB2 were used for Bayesian evolutionary analysis to determine divergence times and evolutionary relationships within the Schizoparmaceae. Molecular clock analyses revealed that the ancestor of Schizoparmaceae split during the Upper Cretaceous period approximately 75.7 Mya (95 % highest posterior density of 60.3–91.3 Mya). Reconstructing ancestral state in phylogenies (RASP) with using the Bayesian Binary Markov chain Monte Carlo (BBM) Method to reconstruct the historical biogeography for the family Schizoparmaceae indicated its most likely origin in Africa. Based on taxonomic and phylogenetic analyses, the Pseudoplagiostomataceae and Pyrisporaceae relationships were clarified and a total of four species described herein. For Pseudoplagiostomataceae, three new species and one known species that include, <em>Pseudoplagiostoma fafuense</em> sp. nov., <em>Ps. ilicis</em> sp. nov., <em>Ps. sanmingense</em> sp. nov. and <em>Ps. bambusae</em> are described and a key of Pseudoplagiostomataceae is provided. With respect to Pyrisporaceae, we considered <em>Pseudoplagiostoma castaneae</em> to be a synonym of <em>Pyrispora castaneae</em>. In addition, a new species of Schizoparmaceae, <em>Coniella fujianensis</em> sp. nov. is described and illustrated.</div></div>","PeriodicalId":56109,"journal":{"name":"Molecular Phylogenetics and Evolution","volume":"201 ","pages":"Article 108211"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular phylogenetic and estimation of evolutionary divergence and biogeography of the family Schizoparmaceae and allied families (Diaporthales, Ascomycota)\",\"authors\":\"Taichang Mu , Yongsheng Lin , Huili Pu , Nemat O. Keyhani , Yuxiao Dang , Huajun Lv , Zhiying Zhao , Zhiang Heng , Ziyi Wu , Chengjie Xiong , Longbing Lin , Yuxi Chen , Hailan Su , Xiayu Guan , Junzhi Qiu\",\"doi\":\"10.1016/j.ympev.2024.108211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Diaporthales includes 32 families, many of which are important plant pathogens, endophytes and saprobes, e.g., members of the families Pseudoplagiostomataceae, Pyrisporaceae and Schizoparmaceae. Nucleotide sequences derived from five genetic loci including: ITS, LSU, TEF1-α, TUB2 and RPB2 were used for Bayesian evolutionary analysis to determine divergence times and evolutionary relationships within the Schizoparmaceae. Molecular clock analyses revealed that the ancestor of Schizoparmaceae split during the Upper Cretaceous period approximately 75.7 Mya (95 % highest posterior density of 60.3–91.3 Mya). Reconstructing ancestral state in phylogenies (RASP) with using the Bayesian Binary Markov chain Monte Carlo (BBM) Method to reconstruct the historical biogeography for the family Schizoparmaceae indicated its most likely origin in Africa. Based on taxonomic and phylogenetic analyses, the Pseudoplagiostomataceae and Pyrisporaceae relationships were clarified and a total of four species described herein. For Pseudoplagiostomataceae, three new species and one known species that include, <em>Pseudoplagiostoma fafuense</em> sp. nov., <em>Ps. ilicis</em> sp. nov., <em>Ps. sanmingense</em> sp. nov. and <em>Ps. bambusae</em> are described and a key of Pseudoplagiostomataceae is provided. With respect to Pyrisporaceae, we considered <em>Pseudoplagiostoma castaneae</em> to be a synonym of <em>Pyrispora castaneae</em>. In addition, a new species of Schizoparmaceae, <em>Coniella fujianensis</em> sp. nov. is described and illustrated.</div></div>\",\"PeriodicalId\":56109,\"journal\":{\"name\":\"Molecular Phylogenetics and Evolution\",\"volume\":\"201 \",\"pages\":\"Article 108211\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Phylogenetics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1055790324002033\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Phylogenetics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1055790324002033","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular phylogenetic and estimation of evolutionary divergence and biogeography of the family Schizoparmaceae and allied families (Diaporthales, Ascomycota)
The Diaporthales includes 32 families, many of which are important plant pathogens, endophytes and saprobes, e.g., members of the families Pseudoplagiostomataceae, Pyrisporaceae and Schizoparmaceae. Nucleotide sequences derived from five genetic loci including: ITS, LSU, TEF1-α, TUB2 and RPB2 were used for Bayesian evolutionary analysis to determine divergence times and evolutionary relationships within the Schizoparmaceae. Molecular clock analyses revealed that the ancestor of Schizoparmaceae split during the Upper Cretaceous period approximately 75.7 Mya (95 % highest posterior density of 60.3–91.3 Mya). Reconstructing ancestral state in phylogenies (RASP) with using the Bayesian Binary Markov chain Monte Carlo (BBM) Method to reconstruct the historical biogeography for the family Schizoparmaceae indicated its most likely origin in Africa. Based on taxonomic and phylogenetic analyses, the Pseudoplagiostomataceae and Pyrisporaceae relationships were clarified and a total of four species described herein. For Pseudoplagiostomataceae, three new species and one known species that include, Pseudoplagiostoma fafuense sp. nov., Ps. ilicis sp. nov., Ps. sanmingense sp. nov. and Ps. bambusae are described and a key of Pseudoplagiostomataceae is provided. With respect to Pyrisporaceae, we considered Pseudoplagiostoma castaneae to be a synonym of Pyrispora castaneae. In addition, a new species of Schizoparmaceae, Coniella fujianensis sp. nov. is described and illustrated.
期刊介绍:
Molecular Phylogenetics and Evolution is dedicated to bringing Darwin''s dream within grasp - to "have fairly true genealogical trees of each great kingdom of Nature." The journal provides a forum for molecular studies that advance our understanding of phylogeny and evolution, further the development of phylogenetically more accurate taxonomic classifications, and ultimately bring a unified classification for all the ramifying lines of life. Phylogeographic studies will be considered for publication if they offer EXCEPTIONAL theoretical or empirical advances.