Xiang Wang, Li Liu, Zhi-Peng Liu, Jiao-Yang Wang, Hai-Su Dai, Xia Ou, Cheng-Cheng Zhang, Ting Yu, Xing-Chao Liu, Shu-Jie Pang, Hai-Ning Fan, Jie Bai, Yan Jiang, Yan-Qi Zhang, Zi-Ran Wang, Zhi-Yu Chen, Ai-Guo Li
{"title":"预测计划进行根治性切除治疗的肝周胆管癌患者早期复发的机器学习模型:一项多中心研究。","authors":"Xiang Wang, Li Liu, Zhi-Peng Liu, Jiao-Yang Wang, Hai-Su Dai, Xia Ou, Cheng-Cheng Zhang, Ting Yu, Xing-Chao Liu, Shu-Jie Pang, Hai-Ning Fan, Jie Bai, Yan Jiang, Yan-Qi Zhang, Zi-Ran Wang, Zhi-Yu Chen, Ai-Guo Li","doi":"10.1016/j.gassur.2024.09.027","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Early recurrence is the leading cause of death for patients with perihilar cholangiocarcinoma (pCCA) after surgery. Identifying high-risk patients preoperatively is important. This study aimed to construct a preoperative prediction model for the early recurrence of patients with pCCA to facilitate planned treatment with curative resection.</p><p><strong>Methods: </strong>This study ultimately enrolled 400 patients with pCCA after curative resection in 5 hospitals between 2013 and 2019. They were randomly divided into training (n = 300) and testing groups (n = 100) at a ratio of 3:1. Associated variables were identified via least absolute shrinkage and selection operator (LASSO) regression. Four machine learning models were constructed: support vector machine, random forest (RF), logistic regression, and K-nearest neighbors. The predictive ability of the models was evaluated via receiving operating characteristic (ROC) curves, precision-recall curve (PRC) curves, and decision curve analysis. Kaplan-Meier (K-M) survival curves were drawn for the high-/low-risk population.</p><p><strong>Results: </strong>Five factors: carbohydrate antigen 19-9, tumor size, total bilirubin, hepatic artery invasion, and portal vein invasion, were selected by LASSO regression. In both the training and testing groups, the ROC curve (area under the curve: 0.983 vs 0.952) and the PRC (0.981 vs 0.939) showed that RF was the best. The cutoff value for distinguishing high- and low-risk patients was 0.51. K-M survival curves revealed that in both groups, there was a significant difference in RFS between high- and low-risk patients (P < .001).</p><p><strong>Conclusion: </strong>This study used preoperative variables from a large, multicenter database to construct a machine learning model that could effectively predict the early recurrence of pCCA in patients to facilitate planned treatment with curative resection and help clinicians make better treatment decisions.</p>","PeriodicalId":15893,"journal":{"name":"Journal of Gastrointestinal Surgery","volume":" ","pages":"2039-2047"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning model to predict early recurrence in patients with perihilar cholangiocarcinoma planned treatment with curative resection: a multicenter study.\",\"authors\":\"Xiang Wang, Li Liu, Zhi-Peng Liu, Jiao-Yang Wang, Hai-Su Dai, Xia Ou, Cheng-Cheng Zhang, Ting Yu, Xing-Chao Liu, Shu-Jie Pang, Hai-Ning Fan, Jie Bai, Yan Jiang, Yan-Qi Zhang, Zi-Ran Wang, Zhi-Yu Chen, Ai-Guo Li\",\"doi\":\"10.1016/j.gassur.2024.09.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Early recurrence is the leading cause of death for patients with perihilar cholangiocarcinoma (pCCA) after surgery. Identifying high-risk patients preoperatively is important. This study aimed to construct a preoperative prediction model for the early recurrence of patients with pCCA to facilitate planned treatment with curative resection.</p><p><strong>Methods: </strong>This study ultimately enrolled 400 patients with pCCA after curative resection in 5 hospitals between 2013 and 2019. They were randomly divided into training (n = 300) and testing groups (n = 100) at a ratio of 3:1. Associated variables were identified via least absolute shrinkage and selection operator (LASSO) regression. Four machine learning models were constructed: support vector machine, random forest (RF), logistic regression, and K-nearest neighbors. The predictive ability of the models was evaluated via receiving operating characteristic (ROC) curves, precision-recall curve (PRC) curves, and decision curve analysis. Kaplan-Meier (K-M) survival curves were drawn for the high-/low-risk population.</p><p><strong>Results: </strong>Five factors: carbohydrate antigen 19-9, tumor size, total bilirubin, hepatic artery invasion, and portal vein invasion, were selected by LASSO regression. In both the training and testing groups, the ROC curve (area under the curve: 0.983 vs 0.952) and the PRC (0.981 vs 0.939) showed that RF was the best. The cutoff value for distinguishing high- and low-risk patients was 0.51. K-M survival curves revealed that in both groups, there was a significant difference in RFS between high- and low-risk patients (P < .001).</p><p><strong>Conclusion: </strong>This study used preoperative variables from a large, multicenter database to construct a machine learning model that could effectively predict the early recurrence of pCCA in patients to facilitate planned treatment with curative resection and help clinicians make better treatment decisions.</p>\",\"PeriodicalId\":15893,\"journal\":{\"name\":\"Journal of Gastrointestinal Surgery\",\"volume\":\" \",\"pages\":\"2039-2047\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Gastrointestinal Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gassur.2024.09.027\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gastrointestinal Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.gassur.2024.09.027","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Machine learning model to predict early recurrence in patients with perihilar cholangiocarcinoma planned treatment with curative resection: a multicenter study.
Background: Early recurrence is the leading cause of death for patients with perihilar cholangiocarcinoma (pCCA) after surgery. Identifying high-risk patients preoperatively is important. This study aimed to construct a preoperative prediction model for the early recurrence of patients with pCCA to facilitate planned treatment with curative resection.
Methods: This study ultimately enrolled 400 patients with pCCA after curative resection in 5 hospitals between 2013 and 2019. They were randomly divided into training (n = 300) and testing groups (n = 100) at a ratio of 3:1. Associated variables were identified via least absolute shrinkage and selection operator (LASSO) regression. Four machine learning models were constructed: support vector machine, random forest (RF), logistic regression, and K-nearest neighbors. The predictive ability of the models was evaluated via receiving operating characteristic (ROC) curves, precision-recall curve (PRC) curves, and decision curve analysis. Kaplan-Meier (K-M) survival curves were drawn for the high-/low-risk population.
Results: Five factors: carbohydrate antigen 19-9, tumor size, total bilirubin, hepatic artery invasion, and portal vein invasion, were selected by LASSO regression. In both the training and testing groups, the ROC curve (area under the curve: 0.983 vs 0.952) and the PRC (0.981 vs 0.939) showed that RF was the best. The cutoff value for distinguishing high- and low-risk patients was 0.51. K-M survival curves revealed that in both groups, there was a significant difference in RFS between high- and low-risk patients (P < .001).
Conclusion: This study used preoperative variables from a large, multicenter database to construct a machine learning model that could effectively predict the early recurrence of pCCA in patients to facilitate planned treatment with curative resection and help clinicians make better treatment decisions.
期刊介绍:
The Journal of Gastrointestinal Surgery is a scholarly, peer-reviewed journal that updates the surgeon on the latest developments in gastrointestinal surgery. The journal includes original articles on surgery of the digestive tract; gastrointestinal images; "How I Do It" articles, subject reviews, book reports, editorial columns, the SSAT Presidential Address, articles by a guest orator, symposia, letters, results of conferences and more. This is the official publication of the Society for Surgery of the Alimentary Tract. The journal functions as an outstanding forum for continuing education in surgery and diseases of the gastrointestinal tract.