用于多视图光谱聚类的稀疏图张量学习

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Man-Sheng Chen;Zhi-Yuan Li;Jia-Qi Lin;Chang-Dong Wang;Dong Huang
{"title":"用于多视图光谱聚类的稀疏图张量学习","authors":"Man-Sheng Chen;Zhi-Yuan Li;Jia-Qi Lin;Chang-Dong Wang;Dong Huang","doi":"10.1109/TETCI.2024.3409724","DOIUrl":null,"url":null,"abstract":"Multi-view spectral clustering has achieved impressive performance by learning multiple robust and meaningful similarity graphs for clustering. Generally, the existing literatures often construct multiple similarity graphs by certain similarity measure (e.g. the Euclidean distance), which lack the desired ability to learn sparse and reliable connections that carry critical information in graph learning while preserving the low-rank structure. Regarding the challenges, a novel Sparse Graph Tensor Learning for Multi-view Spectral Clustering (SGTL) method is designed in this paper, where multiple similarity graphs are seamlessly coupled with the cluster indicators and constrained with a low-rank graph tensor. Specifically, a novel graph learning paradigm is designed by establishing an explicit theoretical connection between the similarity matrices and the cluster indicator matrices, in order that the constructed similarity graphs enjoy the desired block diagonal and sparse property for learning a small portion of reliable links. Then, we stack multiple similarity matrices into a low-rank graph tensor to better preserve the low-rank structure of the reliable links in graph learning, where the key knowledge conveyed by singular values from different views is explicitly considered. Extensive experiments on several benchmark datasets demonstrate the superiority of SGTL.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3534-3543"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Graph Tensor Learning for Multi-View Spectral Clustering\",\"authors\":\"Man-Sheng Chen;Zhi-Yuan Li;Jia-Qi Lin;Chang-Dong Wang;Dong Huang\",\"doi\":\"10.1109/TETCI.2024.3409724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-view spectral clustering has achieved impressive performance by learning multiple robust and meaningful similarity graphs for clustering. Generally, the existing literatures often construct multiple similarity graphs by certain similarity measure (e.g. the Euclidean distance), which lack the desired ability to learn sparse and reliable connections that carry critical information in graph learning while preserving the low-rank structure. Regarding the challenges, a novel Sparse Graph Tensor Learning for Multi-view Spectral Clustering (SGTL) method is designed in this paper, where multiple similarity graphs are seamlessly coupled with the cluster indicators and constrained with a low-rank graph tensor. Specifically, a novel graph learning paradigm is designed by establishing an explicit theoretical connection between the similarity matrices and the cluster indicator matrices, in order that the constructed similarity graphs enjoy the desired block diagonal and sparse property for learning a small portion of reliable links. Then, we stack multiple similarity matrices into a low-rank graph tensor to better preserve the low-rank structure of the reliable links in graph learning, where the key knowledge conveyed by singular values from different views is explicitly considered. Extensive experiments on several benchmark datasets demonstrate the superiority of SGTL.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 5\",\"pages\":\"3534-3543\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10555382/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10555382/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多视角光谱聚类通过学习多个稳健而有意义的相似性图进行聚类,取得了令人瞩目的性能。一般来说,现有文献通常通过某种相似性度量(如欧氏距离)来构建多个相似性图,而这种方法缺乏学习稀疏可靠连接的能力,而这些连接在图学习中承载着关键信息,同时又保留了低秩结构。针对这些挑战,本文设计了一种新颖的稀疏图张量学习多视角光谱聚类(SGTL)方法,在该方法中,多个相似性图与聚类指标无缝耦合,并受低秩图张量约束。具体来说,本文通过在相似性矩阵和聚类指标矩阵之间建立明确的理论联系,设计了一种新颖的图学习范式,从而使构建的相似性图在学习小部分可靠链接时具有所需的对角分块和稀疏特性。然后,我们将多个相似性矩阵堆叠成一个低秩图张量,以便在图学习中更好地保留可靠链接的低秩结构,其中明确考虑了来自不同视图的奇异值所传达的关键知识。在多个基准数据集上的广泛实验证明了 SGTL 的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Graph Tensor Learning for Multi-View Spectral Clustering
Multi-view spectral clustering has achieved impressive performance by learning multiple robust and meaningful similarity graphs for clustering. Generally, the existing literatures often construct multiple similarity graphs by certain similarity measure (e.g. the Euclidean distance), which lack the desired ability to learn sparse and reliable connections that carry critical information in graph learning while preserving the low-rank structure. Regarding the challenges, a novel Sparse Graph Tensor Learning for Multi-view Spectral Clustering (SGTL) method is designed in this paper, where multiple similarity graphs are seamlessly coupled with the cluster indicators and constrained with a low-rank graph tensor. Specifically, a novel graph learning paradigm is designed by establishing an explicit theoretical connection between the similarity matrices and the cluster indicator matrices, in order that the constructed similarity graphs enjoy the desired block diagonal and sparse property for learning a small portion of reliable links. Then, we stack multiple similarity matrices into a low-rank graph tensor to better preserve the low-rank structure of the reliable links in graph learning, where the key knowledge conveyed by singular values from different views is explicitly considered. Extensive experiments on several benchmark datasets demonstrate the superiority of SGTL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信