{"title":"对 20 兆赫以下天空同步辐射光谱进行天基绝对通量测量的仪器误差预算","authors":"J. Rolla;A. Romero-Wolf;T. J. W. Lazio","doi":"10.1029/2023RS007824","DOIUrl":null,"url":null,"abstract":"This work describes the instrumental error budget for space-based measurements of the absolute flux of the sky synchrotron spectrum at frequencies below the ionospheric cutoff (≤20 MHz). We focus on an architecture using electrically short dipoles onboard a small satellite. The error budget combines the contributions of the dipole dimensions, plasma noise, stray capacitance, and front-end amplifier input impedance. We treat the errors using both a Monte Carlo error propagation model and an analytical method. This error budget can be applied to a variety of experiments and used to ultimately improve the sensing capabilities of space-based electrically short dipole instruments. The impact of individual uncertainty components, particularly stray capacitance, is explored in more detail.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 9","pages":"1-23"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An instrument error budget for space-based absolute flux measurements of the sky synchrotron spectrum below 20 MHz\",\"authors\":\"J. Rolla;A. Romero-Wolf;T. J. W. Lazio\",\"doi\":\"10.1029/2023RS007824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the instrumental error budget for space-based measurements of the absolute flux of the sky synchrotron spectrum at frequencies below the ionospheric cutoff (≤20 MHz). We focus on an architecture using electrically short dipoles onboard a small satellite. The error budget combines the contributions of the dipole dimensions, plasma noise, stray capacitance, and front-end amplifier input impedance. We treat the errors using both a Monte Carlo error propagation model and an analytical method. This error budget can be applied to a variety of experiments and used to ultimately improve the sensing capabilities of space-based electrically short dipole instruments. The impact of individual uncertainty components, particularly stray capacitance, is explored in more detail.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 9\",\"pages\":\"1-23\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705027/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705027/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
An instrument error budget for space-based absolute flux measurements of the sky synchrotron spectrum below 20 MHz
This work describes the instrumental error budget for space-based measurements of the absolute flux of the sky synchrotron spectrum at frequencies below the ionospheric cutoff (≤20 MHz). We focus on an architecture using electrically short dipoles onboard a small satellite. The error budget combines the contributions of the dipole dimensions, plasma noise, stray capacitance, and front-end amplifier input impedance. We treat the errors using both a Monte Carlo error propagation model and an analytical method. This error budget can be applied to a variety of experiments and used to ultimately improve the sensing capabilities of space-based electrically short dipole instruments. The impact of individual uncertainty components, particularly stray capacitance, is explored in more detail.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.