{"title":"基于交替方向乘法的自适应非负潜因分析法","authors":"Yurong Zhong;Kechen Liu;Shangce Gao;Xin Luo","doi":"10.1109/TETCI.2024.3420735","DOIUrl":null,"url":null,"abstract":"Large scale interaction data are frequently found in industrial applications related with Big Data. Due to the fact that few interactions commonly happen among numerous nodes in real scenes, such data can be quantified into a High-Dimensional and Incomplete (HDI) matrix where most entries are unknown. An alternating-direction-method-based nonnegative latent factor model can perform efficient and accurate representation leaning to an HDI matrix, while its multiple hyper-parameters greatly limit its scalability for real applications. Aiming at implementing a highly-scalable and efficient latent factor model, this paper adopts the principle of particle swarm optimization and the tree-structured parzen estimator algorithm to facilitate the hyper-parameter adaptation mechanism, thereby building an Alternating-direction-method-based Adaptive Nonnegative Latent Factor (A\n<sup>2</sup>\nNLF) model. Its theoretical convergence is rigorously proved. Empirical studies on several nonnegative HDI matrices from real applications demonstrate that the proposed A\n<sup>2</sup>\nNLF model obtains higher computational and storage efficiency than several state-of-the-art models, along with significant accuracy gain. Its hyper-parameter adaptation is implemented smoothly, thereby greatly boosting its scalability in real problems.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3544-3558"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alternating-Direction-Method of Multipliers-Based Adaptive Nonnegative Latent Factor Analysis\",\"authors\":\"Yurong Zhong;Kechen Liu;Shangce Gao;Xin Luo\",\"doi\":\"10.1109/TETCI.2024.3420735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large scale interaction data are frequently found in industrial applications related with Big Data. Due to the fact that few interactions commonly happen among numerous nodes in real scenes, such data can be quantified into a High-Dimensional and Incomplete (HDI) matrix where most entries are unknown. An alternating-direction-method-based nonnegative latent factor model can perform efficient and accurate representation leaning to an HDI matrix, while its multiple hyper-parameters greatly limit its scalability for real applications. Aiming at implementing a highly-scalable and efficient latent factor model, this paper adopts the principle of particle swarm optimization and the tree-structured parzen estimator algorithm to facilitate the hyper-parameter adaptation mechanism, thereby building an Alternating-direction-method-based Adaptive Nonnegative Latent Factor (A\\n<sup>2</sup>\\nNLF) model. Its theoretical convergence is rigorously proved. Empirical studies on several nonnegative HDI matrices from real applications demonstrate that the proposed A\\n<sup>2</sup>\\nNLF model obtains higher computational and storage efficiency than several state-of-the-art models, along with significant accuracy gain. Its hyper-parameter adaptation is implemented smoothly, thereby greatly boosting its scalability in real problems.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 5\",\"pages\":\"3544-3558\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605988/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605988/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Alternating-Direction-Method of Multipliers-Based Adaptive Nonnegative Latent Factor Analysis
Large scale interaction data are frequently found in industrial applications related with Big Data. Due to the fact that few interactions commonly happen among numerous nodes in real scenes, such data can be quantified into a High-Dimensional and Incomplete (HDI) matrix where most entries are unknown. An alternating-direction-method-based nonnegative latent factor model can perform efficient and accurate representation leaning to an HDI matrix, while its multiple hyper-parameters greatly limit its scalability for real applications. Aiming at implementing a highly-scalable and efficient latent factor model, this paper adopts the principle of particle swarm optimization and the tree-structured parzen estimator algorithm to facilitate the hyper-parameter adaptation mechanism, thereby building an Alternating-direction-method-based Adaptive Nonnegative Latent Factor (A
2
NLF) model. Its theoretical convergence is rigorously proved. Empirical studies on several nonnegative HDI matrices from real applications demonstrate that the proposed A
2
NLF model obtains higher computational and storage efficiency than several state-of-the-art models, along with significant accuracy gain. Its hyper-parameter adaptation is implemented smoothly, thereby greatly boosting its scalability in real problems.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.