{"title":"通过深度融合拉索网实现高能效、可解释的多传感器人类活动识别","authors":"Yu Zhou;Jingtao Xie;Xiao Zhang;Wenhui Wu;Sam Kwong","doi":"10.1109/TETCI.2024.3430008","DOIUrl":null,"url":null,"abstract":"Utilizing data acquired by multiple wearable sensors can usually guarantee more accurate recognition for deep learning based human activity recognition. However, an increased number of sensors bring high processing cost, influencing real-time activity monitoring. Besides, existing methods rarely consider the interpretability of the recognition model in aspects of both the importance of the sensors and features, causing a gap between deep learning and their extendability in real-world scenario. In this paper, we cast the classical fused lasso model into a deep neural network, proposing a deep fused Lasso net (dfLasso-Net), which can perform sensor selection, feature selection and HAR in one end-to-end structure. Specifically, a two-level weight computing module (TLWCM) consisting of a senor weight net and a feature weight net is designed to measure the importance of sensors and features. In sensor weight net, spatial smoothness between physical channels within each sensor is considered to maximize the usage of selected sensors. And the feature weight net is able to maintain the physical meaning of the hand-crafted features through feature selection inside the sensors. By combining with the learning module for classification, HAR can be performed. We test dfLasso-Net on three multi-sensor based HAR datasets, demonstrating that dfLasso-Net achieves better recognition accuracy with the least number of sensors and provides good model interpretability by visualizing the weights of the sensors and features. Last but not least, dflasso-Net can be used as an effective filter-based feature selection approach with much flexibility.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3576-3588"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient and Interpretable Multisensor Human Activity Recognition via Deep Fused Lasso Net\",\"authors\":\"Yu Zhou;Jingtao Xie;Xiao Zhang;Wenhui Wu;Sam Kwong\",\"doi\":\"10.1109/TETCI.2024.3430008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Utilizing data acquired by multiple wearable sensors can usually guarantee more accurate recognition for deep learning based human activity recognition. However, an increased number of sensors bring high processing cost, influencing real-time activity monitoring. Besides, existing methods rarely consider the interpretability of the recognition model in aspects of both the importance of the sensors and features, causing a gap between deep learning and their extendability in real-world scenario. In this paper, we cast the classical fused lasso model into a deep neural network, proposing a deep fused Lasso net (dfLasso-Net), which can perform sensor selection, feature selection and HAR in one end-to-end structure. Specifically, a two-level weight computing module (TLWCM) consisting of a senor weight net and a feature weight net is designed to measure the importance of sensors and features. In sensor weight net, spatial smoothness between physical channels within each sensor is considered to maximize the usage of selected sensors. And the feature weight net is able to maintain the physical meaning of the hand-crafted features through feature selection inside the sensors. By combining with the learning module for classification, HAR can be performed. We test dfLasso-Net on three multi-sensor based HAR datasets, demonstrating that dfLasso-Net achieves better recognition accuracy with the least number of sensors and provides good model interpretability by visualizing the weights of the sensors and features. Last but not least, dflasso-Net can be used as an effective filter-based feature selection approach with much flexibility.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 5\",\"pages\":\"3576-3588\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10606530/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10606530/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
利用多个可穿戴传感器获取的数据通常可以保证基于深度学习的人类活动识别更加准确。然而,传感器数量的增加会带来高昂的处理成本,影响实时活动监测。此外,现有方法很少从传感器和特征的重要性两方面考虑识别模型的可解释性,导致深度学习与其在实际场景中的可扩展性之间存在差距。本文将经典的融合拉索模型转化为深度神经网络,提出了一种深度融合拉索网络(dfLasso-Net),它可以在一个端到端的结构中完成传感器选择、特征选择和HAR。具体来说,设计了一个由传感器权重网和特征权重网组成的两级权重计算模块(TLWCM)来衡量传感器和特征的重要性。在传感器权重网中,考虑了每个传感器内物理通道之间的空间平滑性,以最大限度地提高所选传感器的使用率。而特征权重网能够通过传感器内部的特征选择,保持手工创建特征的物理意义。通过与用于分类的学习模块相结合,可以执行 HAR。我们在三个基于多传感器的 HAR 数据集上测试了 dfLasso-Net,结果表明 dfLassoNet 以最少的传感器数量实现了更高的识别准确率,并通过可视化传感器和特征的权重提供了良好的模型可解释性。最后但并非最不重要的一点是,dflasso-Net 可以作为一种有效的基于滤波器的特征选择方法,具有很大的灵活性。
Energy-Efficient and Interpretable Multisensor Human Activity Recognition via Deep Fused Lasso Net
Utilizing data acquired by multiple wearable sensors can usually guarantee more accurate recognition for deep learning based human activity recognition. However, an increased number of sensors bring high processing cost, influencing real-time activity monitoring. Besides, existing methods rarely consider the interpretability of the recognition model in aspects of both the importance of the sensors and features, causing a gap between deep learning and their extendability in real-world scenario. In this paper, we cast the classical fused lasso model into a deep neural network, proposing a deep fused Lasso net (dfLasso-Net), which can perform sensor selection, feature selection and HAR in one end-to-end structure. Specifically, a two-level weight computing module (TLWCM) consisting of a senor weight net and a feature weight net is designed to measure the importance of sensors and features. In sensor weight net, spatial smoothness between physical channels within each sensor is considered to maximize the usage of selected sensors. And the feature weight net is able to maintain the physical meaning of the hand-crafted features through feature selection inside the sensors. By combining with the learning module for classification, HAR can be performed. We test dfLasso-Net on three multi-sensor based HAR datasets, demonstrating that dfLasso-Net achieves better recognition accuracy with the least number of sensors and provides good model interpretability by visualizing the weights of the sensors and features. Last but not least, dflasso-Net can be used as an effective filter-based feature selection approach with much flexibility.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.