利用匝道效应进行均值场游戏数值计算

René A. Carmona;Claire Zeng
{"title":"利用匝道效应进行均值场游戏数值计算","authors":"René A. Carmona;Claire Zeng","doi":"10.1109/OJCSYS.2024.3419642","DOIUrl":null,"url":null,"abstract":"Recently, a deep-learning algorithm referred to as Deep Galerkin Method (DGM), has gained a lot of attention among those trying to solve numerically Mean Field Games with finite horizon, even if the performance seems to be decreasing significantly with increasing horizon. On the other hand, it has been proven that some specific classes of Mean Field Games enjoy some form of the turnpike property identified over seven decades ago by economists. The gist of this phenomenon is a proof that the solution of an optimal control problem over a long time interval spends most of its time near the stationary solution of the ergodic version of the corresponding infinite horizon optimization problem. After reviewing the implementation of DGM for finite horizon Mean Field Games, we introduce a “turnpike-accelerated” version that incorporates the turnpike estimates in the loss function to be optimized, and we perform a comparative numerical analysis to show the advantages of this accelerated version over the baseline DGM algorithm. We demonstrate on some of the Mean Field Game models with local-couplings known to have the turnpike property, as well as a new class of linear-quadratic models for which we derive explicit turnpike estimates.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"389-404"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10572276","citationCount":"0","resultStr":"{\"title\":\"Leveraging the Turnpike Effect for Mean Field Games Numerics\",\"authors\":\"René A. Carmona;Claire Zeng\",\"doi\":\"10.1109/OJCSYS.2024.3419642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a deep-learning algorithm referred to as Deep Galerkin Method (DGM), has gained a lot of attention among those trying to solve numerically Mean Field Games with finite horizon, even if the performance seems to be decreasing significantly with increasing horizon. On the other hand, it has been proven that some specific classes of Mean Field Games enjoy some form of the turnpike property identified over seven decades ago by economists. The gist of this phenomenon is a proof that the solution of an optimal control problem over a long time interval spends most of its time near the stationary solution of the ergodic version of the corresponding infinite horizon optimization problem. After reviewing the implementation of DGM for finite horizon Mean Field Games, we introduce a “turnpike-accelerated” version that incorporates the turnpike estimates in the loss function to be optimized, and we perform a comparative numerical analysis to show the advantages of this accelerated version over the baseline DGM algorithm. We demonstrate on some of the Mean Field Game models with local-couplings known to have the turnpike property, as well as a new class of linear-quadratic models for which we derive explicit turnpike estimates.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"3 \",\"pages\":\"389-404\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10572276\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10572276/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10572276/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,一种被称为 "深度伽勒金方法(DGM)"的深度学习算法在试图数值求解有限视界均值场博弈的人群中获得了广泛关注,尽管其性能似乎随着视界的增加而显著下降。另一方面,有研究证明,某些特定类别的均值场博弈具有经济学家在七十多年前发现的某种形式的岔道特性。这一现象的要旨是证明了在一个较长的时间间隔内,最优控制问题的解大部分时间都在相应的无限视界优化问题的遍历版本的静态解附近。在回顾了有限视界均值场博弈的 DGM 实现之后,我们引入了 "岔道加速 "版本,该版本将岔道估计纳入了待优化的损失函数中,我们还进行了数值对比分析,以显示该加速版本相对于基准 DGM 算法的优势。我们在一些已知具有岔道特性的局部耦合平均场博弈模型以及一类新的线性二次模型上进行了演示,并得出了明确的岔道估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging the Turnpike Effect for Mean Field Games Numerics
Recently, a deep-learning algorithm referred to as Deep Galerkin Method (DGM), has gained a lot of attention among those trying to solve numerically Mean Field Games with finite horizon, even if the performance seems to be decreasing significantly with increasing horizon. On the other hand, it has been proven that some specific classes of Mean Field Games enjoy some form of the turnpike property identified over seven decades ago by economists. The gist of this phenomenon is a proof that the solution of an optimal control problem over a long time interval spends most of its time near the stationary solution of the ergodic version of the corresponding infinite horizon optimization problem. After reviewing the implementation of DGM for finite horizon Mean Field Games, we introduce a “turnpike-accelerated” version that incorporates the turnpike estimates in the loss function to be optimized, and we perform a comparative numerical analysis to show the advantages of this accelerated version over the baseline DGM algorithm. We demonstrate on some of the Mean Field Game models with local-couplings known to have the turnpike property, as well as a new class of linear-quadratic models for which we derive explicit turnpike estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信