基于深度学习的毫米波双功能雷达-通信混合波束成形

IF 1.3 4区 工程技术 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoyou Yu;Tianchu Li;Ziyun Tian;Miao Yu
{"title":"基于深度学习的毫米波双功能雷达-通信混合波束成形","authors":"Xiaoyou Yu;Tianchu Li;Ziyun Tian;Miao Yu","doi":"10.1109/TLA.2024.10705967","DOIUrl":null,"url":null,"abstract":"We propose a novel deep learning (DL) based HBF design for the dual-functional radar-communication (DFRC) system with the millimeter wave (mmWave) massive multiple-in-multiple-output (MIMO) architecture, in which the HBF is formulated as a non-convex optimization problem. First, the DL-based HBF is designed to minimize the sum-MSE of downlink communications while carrying out necessary radar sensing concurrently. Then the synchronization noise is attached to the input channel data to enhance the robustness of the CNN. After that, an attention mechanism is added into the prediction stage to improve the prediction without affecting the accuracy of the prediction results. Finally, the numerical simulation results show significant tradeoff performance improvements between communication and radar sensing can be obtained over existing HBF designs.","PeriodicalId":55024,"journal":{"name":"IEEE Latin America Transactions","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705967","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Based Hybrid Beamforming for mmWave Dual-Functional Radar-Communication\",\"authors\":\"Xiaoyou Yu;Tianchu Li;Ziyun Tian;Miao Yu\",\"doi\":\"10.1109/TLA.2024.10705967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel deep learning (DL) based HBF design for the dual-functional radar-communication (DFRC) system with the millimeter wave (mmWave) massive multiple-in-multiple-output (MIMO) architecture, in which the HBF is formulated as a non-convex optimization problem. First, the DL-based HBF is designed to minimize the sum-MSE of downlink communications while carrying out necessary radar sensing concurrently. Then the synchronization noise is attached to the input channel data to enhance the robustness of the CNN. After that, an attention mechanism is added into the prediction stage to improve the prediction without affecting the accuracy of the prediction results. Finally, the numerical simulation results show significant tradeoff performance improvements between communication and radar sensing can be obtained over existing HBF designs.\",\"PeriodicalId\":55024,\"journal\":{\"name\":\"IEEE Latin America Transactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705967\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Latin America Transactions\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705967/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Latin America Transactions","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705967/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们为毫米波(mmWave)大规模多入多出(MIMO)架构的双功能雷达通信(DFRC)系统提出了一种基于深度学习(DL)的新型 HBF 设计,其中 HBF 被表述为一个非凸优化问题。首先,设计基于下行链路的 HBF,以最小化下行链路通信的总和-MSE,同时进行必要的雷达传感。然后,在输入信道数据中加入同步噪声,以增强 CNN 的鲁棒性。然后,在预测阶段加入注意机制,以在不影响预测结果准确性的情况下改进预测。最后,数值仿真结果表明,与现有的 HBF 设计相比,通信和雷达传感之间的性能权衡得到了显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Based Hybrid Beamforming for mmWave Dual-Functional Radar-Communication
We propose a novel deep learning (DL) based HBF design for the dual-functional radar-communication (DFRC) system with the millimeter wave (mmWave) massive multiple-in-multiple-output (MIMO) architecture, in which the HBF is formulated as a non-convex optimization problem. First, the DL-based HBF is designed to minimize the sum-MSE of downlink communications while carrying out necessary radar sensing concurrently. Then the synchronization noise is attached to the input channel data to enhance the robustness of the CNN. After that, an attention mechanism is added into the prediction stage to improve the prediction without affecting the accuracy of the prediction results. Finally, the numerical simulation results show significant tradeoff performance improvements between communication and radar sensing can be obtained over existing HBF designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Latin America Transactions
IEEE Latin America Transactions COMPUTER SCIENCE, INFORMATION SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
3.50
自引率
7.70%
发文量
192
审稿时长
3-8 weeks
期刊介绍: IEEE Latin America Transactions (IEEE LATAM) is an interdisciplinary journal focused on the dissemination of original and quality research papers / review articles in Spanish and Portuguese of emerging topics in three main areas: Computing, Electric Energy and Electronics. Some of the sub-areas of the journal are, but not limited to: Automatic control, communications, instrumentation, artificial intelligence, power and industrial electronics, fault diagnosis and detection, transportation electrification, internet of things, electrical machines, circuits and systems, biomedicine and biomedical / haptic applications, secure communications, robotics, sensors and actuators, computer networks, smart grids, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信