Xiaodan Zhang;Shixin Dou;Junzhong Ji;Ying Liu;Zheng Wang
{"title":"用于生成脑 CT 报告的共现关系驱动的层次注意网络","authors":"Xiaodan Zhang;Shixin Dou;Junzhong Ji;Ying Liu;Zheng Wang","doi":"10.1109/TETCI.2024.3413002","DOIUrl":null,"url":null,"abstract":"Automatic generation of medical reports for Brain Computed Tomography (CT) imaging is crucial for helping radiologists make more accurate clinical diagnoses efficiently. Brain CT imaging typically contains rich pathological information, including common pathologies that often co-occur in one report and rare pathologies that appear in medical reports with lower frequency. However, current research ignores the potential co-occurrence between common pathologies and pays insufficient attention to rare pathologies, severely restricting the accuracy and diversity of the generated medical reports. In this paper, we propose a Co-occurrence Relationship Driven Hierarchical Attention Network (CRHAN) to improve Brain CT report generation by mining common and rare pathologies in Brain CT imaging. Specifically, the proposed CRHAN follows a general encoder-decoder framework with two novel attention modules. In the encoder, a co-occurrence relationship guided semantic attention (CRSA) module is proposed to extract the critical semantic features by embedding the co-occurrence relationship of common pathologies into semantic attention. In the decoder, a common-rare topic driven visual attention (CRVA) module is proposed to fuse the common and rare semantic features as sentence topic vectors, and then guide the visual attention to capture important lesion features for medical report generation. Experiments on the Brain CT dataset demonstrate the effectiveness of the proposed method.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 5","pages":"3643-3653"},"PeriodicalIF":5.3000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-Occurrence Relationship Driven Hierarchical Attention Network for Brain CT Report Generation\",\"authors\":\"Xiaodan Zhang;Shixin Dou;Junzhong Ji;Ying Liu;Zheng Wang\",\"doi\":\"10.1109/TETCI.2024.3413002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic generation of medical reports for Brain Computed Tomography (CT) imaging is crucial for helping radiologists make more accurate clinical diagnoses efficiently. Brain CT imaging typically contains rich pathological information, including common pathologies that often co-occur in one report and rare pathologies that appear in medical reports with lower frequency. However, current research ignores the potential co-occurrence between common pathologies and pays insufficient attention to rare pathologies, severely restricting the accuracy and diversity of the generated medical reports. In this paper, we propose a Co-occurrence Relationship Driven Hierarchical Attention Network (CRHAN) to improve Brain CT report generation by mining common and rare pathologies in Brain CT imaging. Specifically, the proposed CRHAN follows a general encoder-decoder framework with two novel attention modules. In the encoder, a co-occurrence relationship guided semantic attention (CRSA) module is proposed to extract the critical semantic features by embedding the co-occurrence relationship of common pathologies into semantic attention. In the decoder, a common-rare topic driven visual attention (CRVA) module is proposed to fuse the common and rare semantic features as sentence topic vectors, and then guide the visual attention to capture important lesion features for medical report generation. Experiments on the Brain CT dataset demonstrate the effectiveness of the proposed method.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 5\",\"pages\":\"3643-3653\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10561569/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10561569/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Automatic generation of medical reports for Brain Computed Tomography (CT) imaging is crucial for helping radiologists make more accurate clinical diagnoses efficiently. Brain CT imaging typically contains rich pathological information, including common pathologies that often co-occur in one report and rare pathologies that appear in medical reports with lower frequency. However, current research ignores the potential co-occurrence between common pathologies and pays insufficient attention to rare pathologies, severely restricting the accuracy and diversity of the generated medical reports. In this paper, we propose a Co-occurrence Relationship Driven Hierarchical Attention Network (CRHAN) to improve Brain CT report generation by mining common and rare pathologies in Brain CT imaging. Specifically, the proposed CRHAN follows a general encoder-decoder framework with two novel attention modules. In the encoder, a co-occurrence relationship guided semantic attention (CRSA) module is proposed to extract the critical semantic features by embedding the co-occurrence relationship of common pathologies into semantic attention. In the decoder, a common-rare topic driven visual attention (CRVA) module is proposed to fuse the common and rare semantic features as sentence topic vectors, and then guide the visual attention to capture important lesion features for medical report generation. Experiments on the Brain CT dataset demonstrate the effectiveness of the proposed method.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.