智能网络驱动的边缘计算中的高能效智能共享:深度强化学习方法

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Junfeng Xie;Qingmin Jia;Youxing Chen
{"title":"智能网络驱动的边缘计算中的高能效智能共享:深度强化学习方法","authors":"Junfeng Xie;Qingmin Jia;Youxing Chen","doi":"10.1109/ACCESS.2024.3469956","DOIUrl":null,"url":null,"abstract":"Advanced artificial intelligence (AI) and multi-access edge computing (MEC) technologies facilitate the development of edge intelligence, enabling the intelligence learned from remote cloud to network edge. To achieve automatic decision-making, the training efficiency and accuracy of AI models are crucial for edge intelligence. However, the collected data volume of each network edge node is limited, which may cause the over-fitting of AI models. To improve the training efficiency and accuracy of AI models for edge intelligence, intelligence networking-empowered edge computing (INEEC) is a promising solution, which enables each network edge node to improve its AI models quickly and economically with the help of other network edge nodes’ sharing of their learned intelligence. Sharing intelligence among network edge nodes efficiently is essential for INEEC. Thus in this paper, we study the intelligence sharing scheme, which aims to maximize the system energy efficiency while ensuring the latency tolerance via jointly optimizing intelligence requesting strategy, transmission power control and computation resource allocation. The system energy efficiency is defined as the ratio of model performance to energy consumption. Taking into account the dynamic characteristics of edge network conditions, the intelligence sharing problem is modeled as a Markov decision process (MDP). Subsequently, a twin delayed deep deterministic policy gradient (TD3)-based algorithm is designed to automatically make the optimal decisions. Finally, by extensive simulation experiments, it is shown that: 1) compared with DDPG and DQN, the proposed algorithm has a better convergence performance; 2) jointly optimizing intelligence requesting strategy, transmission power control and computation resource allocation helps to improve intelligence sharing efficiency; 3) under different parameter settings, the proposed algorithm achieves better results than the benchmark algorithms.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10699330","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Intelligence Sharing in Intelligence Networking-Empowered Edge Computing: A Deep Reinforcement Learning Approach\",\"authors\":\"Junfeng Xie;Qingmin Jia;Youxing Chen\",\"doi\":\"10.1109/ACCESS.2024.3469956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced artificial intelligence (AI) and multi-access edge computing (MEC) technologies facilitate the development of edge intelligence, enabling the intelligence learned from remote cloud to network edge. To achieve automatic decision-making, the training efficiency and accuracy of AI models are crucial for edge intelligence. However, the collected data volume of each network edge node is limited, which may cause the over-fitting of AI models. To improve the training efficiency and accuracy of AI models for edge intelligence, intelligence networking-empowered edge computing (INEEC) is a promising solution, which enables each network edge node to improve its AI models quickly and economically with the help of other network edge nodes’ sharing of their learned intelligence. Sharing intelligence among network edge nodes efficiently is essential for INEEC. Thus in this paper, we study the intelligence sharing scheme, which aims to maximize the system energy efficiency while ensuring the latency tolerance via jointly optimizing intelligence requesting strategy, transmission power control and computation resource allocation. The system energy efficiency is defined as the ratio of model performance to energy consumption. Taking into account the dynamic characteristics of edge network conditions, the intelligence sharing problem is modeled as a Markov decision process (MDP). Subsequently, a twin delayed deep deterministic policy gradient (TD3)-based algorithm is designed to automatically make the optimal decisions. Finally, by extensive simulation experiments, it is shown that: 1) compared with DDPG and DQN, the proposed algorithm has a better convergence performance; 2) jointly optimizing intelligence requesting strategy, transmission power control and computation resource allocation helps to improve intelligence sharing efficiency; 3) under different parameter settings, the proposed algorithm achieves better results than the benchmark algorithms.\",\"PeriodicalId\":13079,\"journal\":{\"name\":\"IEEE Access\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10699330\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Access\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10699330/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10699330/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

先进的人工智能(AI)和多接入边缘计算(MEC)技术促进了边缘智能的发展,实现了从远程云到网络边缘的智能学习。要实现自动决策,人工智能模型的训练效率和准确性对边缘智能至关重要。然而,每个网络边缘节点收集的数据量有限,这可能会导致人工智能模型的过度拟合。为了提高边缘智能人工智能模型的训练效率和准确性,智能网络赋能边缘计算(INEEC)是一种很有前途的解决方案,它能让每个网络边缘节点借助其他网络边缘节点共享的学习智能,快速、经济地改进其人工智能模型。在网络边缘节点之间高效共享智能对 INEEC 至关重要。因此,本文研究了智能共享方案,旨在通过联合优化智能请求策略、传输功率控制和计算资源分配,在确保延迟容限的同时最大限度地提高系统能效。系统能效定义为模型性能与能耗之比。考虑到边缘网络条件的动态特性,情报共享问题被建模为马尔可夫决策过程(MDP)。随后,设计了一种基于双延迟深度确定性策略梯度(TD3)的算法来自动做出最优决策。最后,通过大量的仿真实验表明1)与 DDPG 和 DQN 相比,本文提出的算法具有更好的收敛性能;2)联合优化情报请求策略、传输功率控制和计算资源分配,有助于提高情报共享效率;3)在不同参数设置下,本文提出的算法比基准算法取得了更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Intelligence Sharing in Intelligence Networking-Empowered Edge Computing: A Deep Reinforcement Learning Approach
Advanced artificial intelligence (AI) and multi-access edge computing (MEC) technologies facilitate the development of edge intelligence, enabling the intelligence learned from remote cloud to network edge. To achieve automatic decision-making, the training efficiency and accuracy of AI models are crucial for edge intelligence. However, the collected data volume of each network edge node is limited, which may cause the over-fitting of AI models. To improve the training efficiency and accuracy of AI models for edge intelligence, intelligence networking-empowered edge computing (INEEC) is a promising solution, which enables each network edge node to improve its AI models quickly and economically with the help of other network edge nodes’ sharing of their learned intelligence. Sharing intelligence among network edge nodes efficiently is essential for INEEC. Thus in this paper, we study the intelligence sharing scheme, which aims to maximize the system energy efficiency while ensuring the latency tolerance via jointly optimizing intelligence requesting strategy, transmission power control and computation resource allocation. The system energy efficiency is defined as the ratio of model performance to energy consumption. Taking into account the dynamic characteristics of edge network conditions, the intelligence sharing problem is modeled as a Markov decision process (MDP). Subsequently, a twin delayed deep deterministic policy gradient (TD3)-based algorithm is designed to automatically make the optimal decisions. Finally, by extensive simulation experiments, it is shown that: 1) compared with DDPG and DQN, the proposed algorithm has a better convergence performance; 2) jointly optimizing intelligence requesting strategy, transmission power control and computation resource allocation helps to improve intelligence sharing efficiency; 3) under different parameter settings, the proposed algorithm achieves better results than the benchmark algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信