基于机器学习的单细胞数据分析揭示了急性髓性白血病患者和健康对照组中特异性单细胞基因表达谱的证据。

IF 2.6 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Andreas Chrysostomou , Cristina Furlan, Edoardo Saccenti
{"title":"基于机器学习的单细胞数据分析揭示了急性髓性白血病患者和健康对照组中特异性单细胞基因表达谱的证据。","authors":"Andreas Chrysostomou ,&nbsp;Cristina Furlan,&nbsp;Edoardo Saccenti","doi":"10.1016/j.bbagrm.2024.195062","DOIUrl":null,"url":null,"abstract":"<div><div>Acute Myeloid Leukaemia (AML) is characterized by uncontrolled growth of immature myeloid cells, disrupting normal blood production. Treatment typically involves chemotherapy, targeted therapy, and stem cell transplantation but many patients develop chemoresistance, leading to poor outcomes due to the disease's high heterogeneity. In this study, we used publicly available single-cell RNA sequencing data and machine learning to classify AML patients and healthy, monocytes, dendritic and progenitor cells population. We found that gene expression profiles of AML patients and healthy controls can be classified at the individual level with high accuracy (&gt;70 %) when using progenitor cells, suggesting the existence of subject-specific single cell transcriptomics profiles. The analysis also revealed molecular determinants of patient heterogeneity (e.g. TPSD1, CT45A1, and GABRA4) which could support new strategies for patient stratification and personalized treatment in leukaemia.</div></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1867 4","pages":"Article 195062"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning based analysis of single-cell data reveals evidence of subject-specific single-cell gene expression profiles in acute myeloid leukaemia patients and healthy controls\",\"authors\":\"Andreas Chrysostomou ,&nbsp;Cristina Furlan,&nbsp;Edoardo Saccenti\",\"doi\":\"10.1016/j.bbagrm.2024.195062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acute Myeloid Leukaemia (AML) is characterized by uncontrolled growth of immature myeloid cells, disrupting normal blood production. Treatment typically involves chemotherapy, targeted therapy, and stem cell transplantation but many patients develop chemoresistance, leading to poor outcomes due to the disease's high heterogeneity. In this study, we used publicly available single-cell RNA sequencing data and machine learning to classify AML patients and healthy, monocytes, dendritic and progenitor cells population. We found that gene expression profiles of AML patients and healthy controls can be classified at the individual level with high accuracy (&gt;70 %) when using progenitor cells, suggesting the existence of subject-specific single cell transcriptomics profiles. The analysis also revealed molecular determinants of patient heterogeneity (e.g. TPSD1, CT45A1, and GABRA4) which could support new strategies for patient stratification and personalized treatment in leukaemia.</div></div>\",\"PeriodicalId\":55382,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms\",\"volume\":\"1867 4\",\"pages\":\"Article 195062\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874939924000580\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939924000580","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

急性髓性白血病(AML)的特点是未成熟的髓细胞不受控制地生长,破坏了正常的造血功能。治疗方法通常包括化疗、靶向治疗和干细胞移植,但由于该病的高度异质性,许多患者会产生化疗耐药性,导致治疗效果不佳。在这项研究中,我们利用公开的单细胞 RNA 测序数据和机器学习对急性髓细胞性白血病患者和健康的单核细胞、树突状细胞和祖细胞群进行了分类。我们发现,当使用祖细胞时,急性髓细胞性白血病患者和健康对照组的基因表达谱可在个体水平上进行分类,准确率很高(>70%),这表明存在受试者特异性的单细胞转录组学特征。分析还揭示了患者异质性的分子决定因素(如TPSD1、CT45A1和GABRA4),这有助于白血病患者分层和个性化治疗的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning based analysis of single-cell data reveals evidence of subject-specific single-cell gene expression profiles in acute myeloid leukaemia patients and healthy controls
Acute Myeloid Leukaemia (AML) is characterized by uncontrolled growth of immature myeloid cells, disrupting normal blood production. Treatment typically involves chemotherapy, targeted therapy, and stem cell transplantation but many patients develop chemoresistance, leading to poor outcomes due to the disease's high heterogeneity. In this study, we used publicly available single-cell RNA sequencing data and machine learning to classify AML patients and healthy, monocytes, dendritic and progenitor cells population. We found that gene expression profiles of AML patients and healthy controls can be classified at the individual level with high accuracy (>70 %) when using progenitor cells, suggesting the existence of subject-specific single cell transcriptomics profiles. The analysis also revealed molecular determinants of patient heterogeneity (e.g. TPSD1, CT45A1, and GABRA4) which could support new strategies for patient stratification and personalized treatment in leukaemia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
2.10%
发文量
63
审稿时长
44 days
期刊介绍: BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信