Albert Navarro-Gallinad, Fabrizio Orlandi, Jennifer Scott, Enock Havyarimana, Neil Basu, Mark A. Little, Declan O’Sullivan
{"title":"利用 SERDIF 框架,在弹性环境中实现罕见疾病的数据链接。","authors":"Albert Navarro-Gallinad, Fabrizio Orlandi, Jennifer Scott, Enock Havyarimana, Neil Basu, Mark A. Little, Declan O’Sullivan","doi":"10.1038/s41746-024-01267-6","DOIUrl":null,"url":null,"abstract":"Environmental factors amplified by climate change contribute significantly to the global burden of disease, disproportionately impacting vulnerable populations, such as individuals with rare diseases. Researchers require innovative, dynamic data linkage methods to enable the development of risk prediction models, particularly for diseases like vasculitis with unknown aetiology but potential environmental triggers. In response, we present the Semantic Environmental and Rare Disease Data Integration Framework (SERDIF). SERDIF was evaluated with researchers studying climate-related health hazards of vasculitis disease activity across European countries (NP1 = 10, NP2 = 17, NP3 = 23). Usability metrics consistently improved, indicating SERDIF’s effectiveness in linking complex environmental and health datasets. Furthermore, SERDIF-enabled epidemiologists to study environmental factors in a pregnancy cohort in Lombardy, showcasing its versatility beyond rare diseases. This framework offers for the first time a user-friendly, FAIR-compliant design for environment-health data linkage with export capabilities enabling data analysis to mitigate health risks posed by climate change.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":null,"pages":null},"PeriodicalIF":12.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452697/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enabling data linkages for rare diseases in a resilient environment with the SERDIF framework\",\"authors\":\"Albert Navarro-Gallinad, Fabrizio Orlandi, Jennifer Scott, Enock Havyarimana, Neil Basu, Mark A. Little, Declan O’Sullivan\",\"doi\":\"10.1038/s41746-024-01267-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Environmental factors amplified by climate change contribute significantly to the global burden of disease, disproportionately impacting vulnerable populations, such as individuals with rare diseases. Researchers require innovative, dynamic data linkage methods to enable the development of risk prediction models, particularly for diseases like vasculitis with unknown aetiology but potential environmental triggers. In response, we present the Semantic Environmental and Rare Disease Data Integration Framework (SERDIF). SERDIF was evaluated with researchers studying climate-related health hazards of vasculitis disease activity across European countries (NP1 = 10, NP2 = 17, NP3 = 23). Usability metrics consistently improved, indicating SERDIF’s effectiveness in linking complex environmental and health datasets. Furthermore, SERDIF-enabled epidemiologists to study environmental factors in a pregnancy cohort in Lombardy, showcasing its versatility beyond rare diseases. This framework offers for the first time a user-friendly, FAIR-compliant design for environment-health data linkage with export capabilities enabling data analysis to mitigate health risks posed by climate change.\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452697/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41746-024-01267-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01267-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Enabling data linkages for rare diseases in a resilient environment with the SERDIF framework
Environmental factors amplified by climate change contribute significantly to the global burden of disease, disproportionately impacting vulnerable populations, such as individuals with rare diseases. Researchers require innovative, dynamic data linkage methods to enable the development of risk prediction models, particularly for diseases like vasculitis with unknown aetiology but potential environmental triggers. In response, we present the Semantic Environmental and Rare Disease Data Integration Framework (SERDIF). SERDIF was evaluated with researchers studying climate-related health hazards of vasculitis disease activity across European countries (NP1 = 10, NP2 = 17, NP3 = 23). Usability metrics consistently improved, indicating SERDIF’s effectiveness in linking complex environmental and health datasets. Furthermore, SERDIF-enabled epidemiologists to study environmental factors in a pregnancy cohort in Lombardy, showcasing its versatility beyond rare diseases. This framework offers for the first time a user-friendly, FAIR-compliant design for environment-health data linkage with export capabilities enabling data analysis to mitigate health risks posed by climate change.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.