Kevin Castillo-Mendieta, Guillermin Agüero-Chapin, Edgar A Marquez, Yunierkis Perez-Castillo, Stephen J Barigye, Nelson Santiago Vispo, Cesar R García-Jacas, Yovani Marrero-Ponce
{"title":"利用基于相似性的复杂网络的可视化数据挖掘进行多肽溶血活性分析。","authors":"Kevin Castillo-Mendieta, Guillermin Agüero-Chapin, Edgar A Marquez, Yunierkis Perez-Castillo, Stephen J Barigye, Nelson Santiago Vispo, Cesar R García-Jacas, Yovani Marrero-Ponce","doi":"10.1038/s41540-024-00429-2","DOIUrl":null,"url":null,"abstract":"<p><p>Peptides are promising drug development frameworks that have been hindered by intrinsic undesired properties including hemolytic activity. We aim to get a better insight into the chemical space of hemolytic peptides using a novel approach based on network science and data mining. Metadata networks (METNs) were useful to characterize and find general patterns associated with hemolytic peptides, whereas Half-Space Proximal Networks (HSPNs), represented the hemolytic peptide space. The best candidate HSPNs were used to extract various subsets of hemolytic peptides (scaffolds) considering network centrality and peptide similarity. These scaffolds have been proved to be useful in developing robust similarity-based model classifiers. Finally, using an alignment-free approach, we reported 47 putative hemolytic motifs, which can be used as toxic signatures when developing novel peptide-based drugs. We provided evidence that the number of hemolytic motifs in a sequence might be related to the likelihood of being hemolytic.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452708/pdf/","citationCount":"0","resultStr":"{\"title\":\"Peptide hemolytic activity analysis using visual data mining of similarity-based complex networks.\",\"authors\":\"Kevin Castillo-Mendieta, Guillermin Agüero-Chapin, Edgar A Marquez, Yunierkis Perez-Castillo, Stephen J Barigye, Nelson Santiago Vispo, Cesar R García-Jacas, Yovani Marrero-Ponce\",\"doi\":\"10.1038/s41540-024-00429-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Peptides are promising drug development frameworks that have been hindered by intrinsic undesired properties including hemolytic activity. We aim to get a better insight into the chemical space of hemolytic peptides using a novel approach based on network science and data mining. Metadata networks (METNs) were useful to characterize and find general patterns associated with hemolytic peptides, whereas Half-Space Proximal Networks (HSPNs), represented the hemolytic peptide space. The best candidate HSPNs were used to extract various subsets of hemolytic peptides (scaffolds) considering network centrality and peptide similarity. These scaffolds have been proved to be useful in developing robust similarity-based model classifiers. Finally, using an alignment-free approach, we reported 47 putative hemolytic motifs, which can be used as toxic signatures when developing novel peptide-based drugs. We provided evidence that the number of hemolytic motifs in a sequence might be related to the likelihood of being hemolytic.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452708/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-024-00429-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00429-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Peptide hemolytic activity analysis using visual data mining of similarity-based complex networks.
Peptides are promising drug development frameworks that have been hindered by intrinsic undesired properties including hemolytic activity. We aim to get a better insight into the chemical space of hemolytic peptides using a novel approach based on network science and data mining. Metadata networks (METNs) were useful to characterize and find general patterns associated with hemolytic peptides, whereas Half-Space Proximal Networks (HSPNs), represented the hemolytic peptide space. The best candidate HSPNs were used to extract various subsets of hemolytic peptides (scaffolds) considering network centrality and peptide similarity. These scaffolds have been proved to be useful in developing robust similarity-based model classifiers. Finally, using an alignment-free approach, we reported 47 putative hemolytic motifs, which can be used as toxic signatures when developing novel peptide-based drugs. We provided evidence that the number of hemolytic motifs in a sequence might be related to the likelihood of being hemolytic.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.