Yujiao Hua , Juan Lv , Yan Zhang , Yongjuan Ding , Jinghua Chen
{"title":"基于LC-MS的血清代谢组学分析和奥沙利铂诱导结直肠癌神经毒性的潜在生物标记物","authors":"Yujiao Hua , Juan Lv , Yan Zhang , Yongjuan Ding , Jinghua Chen","doi":"10.1016/j.jpba.2024.116492","DOIUrl":null,"url":null,"abstract":"<div><div>Oxapliplatin-induced peripheral neuropathy (OIPN) is a significant adverse effect encountered in patients with colorectal cancer undergoing oxaliplatin therapy. However, the pathogenesis of OIPN remains unclear. This study aimed to identify potential diagnostic biomarkers for OIPN and discover the metabolic pathways associated with the disease. Serum samples were collected from 218 subjects, including patients with OIPN and control (CONT). The metabolite profiles were analyzed using nontargeted liquid chromatography-mass spectrometry (LC-MS) serum metabolomics method. Subsequently, differentially altered metabolites were identified and evaluated through multivariate statistical analyses. In this study, patients with OIPN and CONT were distinguished by ten significant metabolites. The levels of racemethionine, O-acetylcarnitine, stearolic acid, aminoadipic acid, iminoarginine, galactaric acid, and all-trans-retinoic acid were increased, whereas the levels of 3-methyl-L-tyrosine, 5-aminopentanoic acid, and erythritol compared were found to be diminished in patients with OIPN when compared to the CONT. Through receiver operating characteristic (ROC) curve analysis, racemethionine, stearolic acid, 5-aminopentanoic acid, erythritol, aminoadipic acid, and all-trans-retinoic acid were pinpointed as promising biomarkers for OIPN. Significantly altered pathways included amino acids (arginine biosynthesis, beta-alanine metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, lysine degradation, and phenylalanine, tyrosine and tryptophan biosynthesis), lipid (linoleic acid metabolism and the biosynthesis of unsaturated fatty acids), and energy metabolism. This study, by identifying serum biomarkers and dissecting metabolic pathways, offers a groundbreaking perspective on the susceptibility mechanisms underlying OIPN. It stands as an invaluable resource for the adjunctive diagnosis of OIPN, with the potential to diminish the incidence of adverse reactions and to enhance the objectivity and reliability of clinical diagnoses of OIPN.</div></div>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LC-MS-based serum metabolomics analysis and potential biomarkers for oxaliplatin induced neurotoxicity in colorectal cancer\",\"authors\":\"Yujiao Hua , Juan Lv , Yan Zhang , Yongjuan Ding , Jinghua Chen\",\"doi\":\"10.1016/j.jpba.2024.116492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Oxapliplatin-induced peripheral neuropathy (OIPN) is a significant adverse effect encountered in patients with colorectal cancer undergoing oxaliplatin therapy. However, the pathogenesis of OIPN remains unclear. This study aimed to identify potential diagnostic biomarkers for OIPN and discover the metabolic pathways associated with the disease. Serum samples were collected from 218 subjects, including patients with OIPN and control (CONT). The metabolite profiles were analyzed using nontargeted liquid chromatography-mass spectrometry (LC-MS) serum metabolomics method. Subsequently, differentially altered metabolites were identified and evaluated through multivariate statistical analyses. In this study, patients with OIPN and CONT were distinguished by ten significant metabolites. The levels of racemethionine, O-acetylcarnitine, stearolic acid, aminoadipic acid, iminoarginine, galactaric acid, and all-trans-retinoic acid were increased, whereas the levels of 3-methyl-L-tyrosine, 5-aminopentanoic acid, and erythritol compared were found to be diminished in patients with OIPN when compared to the CONT. Through receiver operating characteristic (ROC) curve analysis, racemethionine, stearolic acid, 5-aminopentanoic acid, erythritol, aminoadipic acid, and all-trans-retinoic acid were pinpointed as promising biomarkers for OIPN. Significantly altered pathways included amino acids (arginine biosynthesis, beta-alanine metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, lysine degradation, and phenylalanine, tyrosine and tryptophan biosynthesis), lipid (linoleic acid metabolism and the biosynthesis of unsaturated fatty acids), and energy metabolism. This study, by identifying serum biomarkers and dissecting metabolic pathways, offers a groundbreaking perspective on the susceptibility mechanisms underlying OIPN. It stands as an invaluable resource for the adjunctive diagnosis of OIPN, with the potential to diminish the incidence of adverse reactions and to enhance the objectivity and reliability of clinical diagnoses of OIPN.</div></div>\",\"PeriodicalId\":16685,\"journal\":{\"name\":\"Journal of pharmaceutical and biomedical analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmaceutical and biomedical analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S073170852400534X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S073170852400534X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
LC-MS-based serum metabolomics analysis and potential biomarkers for oxaliplatin induced neurotoxicity in colorectal cancer
Oxapliplatin-induced peripheral neuropathy (OIPN) is a significant adverse effect encountered in patients with colorectal cancer undergoing oxaliplatin therapy. However, the pathogenesis of OIPN remains unclear. This study aimed to identify potential diagnostic biomarkers for OIPN and discover the metabolic pathways associated with the disease. Serum samples were collected from 218 subjects, including patients with OIPN and control (CONT). The metabolite profiles were analyzed using nontargeted liquid chromatography-mass spectrometry (LC-MS) serum metabolomics method. Subsequently, differentially altered metabolites were identified and evaluated through multivariate statistical analyses. In this study, patients with OIPN and CONT were distinguished by ten significant metabolites. The levels of racemethionine, O-acetylcarnitine, stearolic acid, aminoadipic acid, iminoarginine, galactaric acid, and all-trans-retinoic acid were increased, whereas the levels of 3-methyl-L-tyrosine, 5-aminopentanoic acid, and erythritol compared were found to be diminished in patients with OIPN when compared to the CONT. Through receiver operating characteristic (ROC) curve analysis, racemethionine, stearolic acid, 5-aminopentanoic acid, erythritol, aminoadipic acid, and all-trans-retinoic acid were pinpointed as promising biomarkers for OIPN. Significantly altered pathways included amino acids (arginine biosynthesis, beta-alanine metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, lysine degradation, and phenylalanine, tyrosine and tryptophan biosynthesis), lipid (linoleic acid metabolism and the biosynthesis of unsaturated fatty acids), and energy metabolism. This study, by identifying serum biomarkers and dissecting metabolic pathways, offers a groundbreaking perspective on the susceptibility mechanisms underlying OIPN. It stands as an invaluable resource for the adjunctive diagnosis of OIPN, with the potential to diminish the incidence of adverse reactions and to enhance the objectivity and reliability of clinical diagnoses of OIPN.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.