使用开放式轻型非密封面罩清除考生呼出气体的新型系统--概念验证研究。

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS
Danial Abu Shkara, Yoav Keynan, Shay Brikman, Guy Dori
{"title":"使用开放式轻型非密封面罩清除考生呼出气体的新型系统--概念验证研究。","authors":"Danial Abu Shkara, Yoav Keynan, Shay Brikman, Guy Dori","doi":"10.1088/1752-7163/ad836d","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with respiratory infections (e.g., COVID-19, antimicrobial resistant bacteria) discharge pathogens to the environment, exposing healthcare workers and inpatients to deleterious complications. This study tested the performance of SPEAR-P1 (synchronized personal exhaled air removal system - prototype 1), which actively detects expiration and removes exhaled air using an open, non-sealing lightweight facemask connected to a deep vacuum generating unit (DVGU). Fourteen healthy examinees practiced breathing through facemasks at 30, 25 and 20 breaths per minute; oxygen and nebulized saline were added at later steps. To test the efficacy of removing exhaled air, CO2 was used as a proxy and its level was measured from the outer surface of the open facemask. Compared to the baseline recording, SPEAR-P1 reduced CO2 escaping from the facemask by 66% on average for all study steps and respiratory rates (p<0.001), reaching 85.55% on average at 20 breaths per minute (p<0.001). This study shows that removing exhaled air from examinees using an open, non-sealing lightweight facemask is feasible. Future development of this system will enhance its efficacy and provide a method to remove a patient's contaminating aerosol without the need to \"seal\" the patient, especially in settings where isolation rooms are not readily available.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel System for Removing Examinee's Exhaled Air Using an Open, Lightweight Non-Sealing Facemask - a Proof-of-Concept Study.\",\"authors\":\"Danial Abu Shkara, Yoav Keynan, Shay Brikman, Guy Dori\",\"doi\":\"10.1088/1752-7163/ad836d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patients with respiratory infections (e.g., COVID-19, antimicrobial resistant bacteria) discharge pathogens to the environment, exposing healthcare workers and inpatients to deleterious complications. This study tested the performance of SPEAR-P1 (synchronized personal exhaled air removal system - prototype 1), which actively detects expiration and removes exhaled air using an open, non-sealing lightweight facemask connected to a deep vacuum generating unit (DVGU). Fourteen healthy examinees practiced breathing through facemasks at 30, 25 and 20 breaths per minute; oxygen and nebulized saline were added at later steps. To test the efficacy of removing exhaled air, CO2 was used as a proxy and its level was measured from the outer surface of the open facemask. Compared to the baseline recording, SPEAR-P1 reduced CO2 escaping from the facemask by 66% on average for all study steps and respiratory rates (p<0.001), reaching 85.55% on average at 20 breaths per minute (p<0.001). This study shows that removing exhaled air from examinees using an open, non-sealing lightweight facemask is feasible. Future development of this system will enhance its efficacy and provide a method to remove a patient's contaminating aerosol without the need to \\\"seal\\\" the patient, especially in settings where isolation rooms are not readily available.</p>\",\"PeriodicalId\":15306,\"journal\":{\"name\":\"Journal of breath research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of breath research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1088/1752-7163/ad836d\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad836d","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

呼吸道感染(如 COVID-19、抗菌细菌)患者会将病原体排放到环境中,使医护人员和住院患者面临有害的并发症。这项研究测试了 SPEAR-P1(同步个人呼出气体清除系统--原型 1)的性能,该系统可主动检测呼气,并使用连接到深真空发生装置(DVGU)的开放式非密封轻型面罩清除呼出气体。14 名健康受试者分别以每分钟 30 次、25 次和 20 次的速度通过面罩进行呼吸练习;氧气和雾化生理盐水在后面的步骤中添加。为了测试排除呼出空气的效果,使用二氧化碳作为替代物,并从打开的面罩外表面测量其含量。与基线记录相比,在所有研究步骤和呼吸频率下,SPEAR-P1 使面罩中逸出的二氧化碳平均减少了 66% (p<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel System for Removing Examinee's Exhaled Air Using an Open, Lightweight Non-Sealing Facemask - a Proof-of-Concept Study.

Patients with respiratory infections (e.g., COVID-19, antimicrobial resistant bacteria) discharge pathogens to the environment, exposing healthcare workers and inpatients to deleterious complications. This study tested the performance of SPEAR-P1 (synchronized personal exhaled air removal system - prototype 1), which actively detects expiration and removes exhaled air using an open, non-sealing lightweight facemask connected to a deep vacuum generating unit (DVGU). Fourteen healthy examinees practiced breathing through facemasks at 30, 25 and 20 breaths per minute; oxygen and nebulized saline were added at later steps. To test the efficacy of removing exhaled air, CO2 was used as a proxy and its level was measured from the outer surface of the open facemask. Compared to the baseline recording, SPEAR-P1 reduced CO2 escaping from the facemask by 66% on average for all study steps and respiratory rates (p<0.001), reaching 85.55% on average at 20 breaths per minute (p<0.001). This study shows that removing exhaled air from examinees using an open, non-sealing lightweight facemask is feasible. Future development of this system will enhance its efficacy and provide a method to remove a patient's contaminating aerosol without the need to "seal" the patient, especially in settings where isolation rooms are not readily available.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信