{"title":"从大韩民国采集的中生代线虫分离物的亚群中普遍存在含有端粒重复的单元。","authors":"Seoyeon Kim, Jun Kim","doi":"10.1007/s13258-024-01576-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mesorhabditis is known for its somatic genome being only a small portion of the germline genome due to programmed DNA elimination. This phenotype may be associated with the maintenance of telomeres at the ends of fragmented somatic chromosomes.</p><p><strong>Objective: </strong>To comprehensively investigate the telomeric regions of Mesorhabditis nematodes at the sequence level, we endeavored to collect a Mesorhabditis nematode in the Republic of Korea and acquire its highly contiguous genome sequences.</p><p><strong>Methods: </strong>We isolated a Mesorhabditis nematode and assembled its 108-Mb draft genome using both 6.3 Gb (53 ×) of short-read and 3.0 Gb (25 × , N50 = 5.7 kb) of nanopore-based long-read sequencing data. Our genome assembly exhibits comparable quality to the public genome of Mesorhabditis belari in terms of contiguity and evolutionary conserved genes.</p><p><strong>Results: </strong>Unexpectedly, our Mesorhabditis genome has many more interstitial telomeric sequences (ITSs), specifically subtelomeric ones, compared to the genomes of Caenorhabditis elegans and M. belari. Moreover, several subtelomeric sequences containing ITSs had 4-26 homologous sequences, implying they are highly repetitive. Based on this highly repetitive nature, we hypothesize that subtelomeric ITSs might have accumulated through the action of transposable elements containing ITSs.</p><p><strong>Conclusions: </strong>It still remains elusive whether these ITS-containing units are associated with programmed DNA elimination, but they may facilitate new telomere formation after DNA elimination. Our genomic resources for Mesorhabditis can aid in understanding how its distinct phenotypes have evolved.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Units containing telomeric repeats are prevalent in subtelomeric regions of a Mesorhabditis isolate collected from the Republic of Korea.\",\"authors\":\"Seoyeon Kim, Jun Kim\",\"doi\":\"10.1007/s13258-024-01576-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mesorhabditis is known for its somatic genome being only a small portion of the germline genome due to programmed DNA elimination. This phenotype may be associated with the maintenance of telomeres at the ends of fragmented somatic chromosomes.</p><p><strong>Objective: </strong>To comprehensively investigate the telomeric regions of Mesorhabditis nematodes at the sequence level, we endeavored to collect a Mesorhabditis nematode in the Republic of Korea and acquire its highly contiguous genome sequences.</p><p><strong>Methods: </strong>We isolated a Mesorhabditis nematode and assembled its 108-Mb draft genome using both 6.3 Gb (53 ×) of short-read and 3.0 Gb (25 × , N50 = 5.7 kb) of nanopore-based long-read sequencing data. Our genome assembly exhibits comparable quality to the public genome of Mesorhabditis belari in terms of contiguity and evolutionary conserved genes.</p><p><strong>Results: </strong>Unexpectedly, our Mesorhabditis genome has many more interstitial telomeric sequences (ITSs), specifically subtelomeric ones, compared to the genomes of Caenorhabditis elegans and M. belari. Moreover, several subtelomeric sequences containing ITSs had 4-26 homologous sequences, implying they are highly repetitive. Based on this highly repetitive nature, we hypothesize that subtelomeric ITSs might have accumulated through the action of transposable elements containing ITSs.</p><p><strong>Conclusions: </strong>It still remains elusive whether these ITS-containing units are associated with programmed DNA elimination, but they may facilitate new telomere formation after DNA elimination. Our genomic resources for Mesorhabditis can aid in understanding how its distinct phenotypes have evolved.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01576-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01576-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Units containing telomeric repeats are prevalent in subtelomeric regions of a Mesorhabditis isolate collected from the Republic of Korea.
Background: Mesorhabditis is known for its somatic genome being only a small portion of the germline genome due to programmed DNA elimination. This phenotype may be associated with the maintenance of telomeres at the ends of fragmented somatic chromosomes.
Objective: To comprehensively investigate the telomeric regions of Mesorhabditis nematodes at the sequence level, we endeavored to collect a Mesorhabditis nematode in the Republic of Korea and acquire its highly contiguous genome sequences.
Methods: We isolated a Mesorhabditis nematode and assembled its 108-Mb draft genome using both 6.3 Gb (53 ×) of short-read and 3.0 Gb (25 × , N50 = 5.7 kb) of nanopore-based long-read sequencing data. Our genome assembly exhibits comparable quality to the public genome of Mesorhabditis belari in terms of contiguity and evolutionary conserved genes.
Results: Unexpectedly, our Mesorhabditis genome has many more interstitial telomeric sequences (ITSs), specifically subtelomeric ones, compared to the genomes of Caenorhabditis elegans and M. belari. Moreover, several subtelomeric sequences containing ITSs had 4-26 homologous sequences, implying they are highly repetitive. Based on this highly repetitive nature, we hypothesize that subtelomeric ITSs might have accumulated through the action of transposable elements containing ITSs.
Conclusions: It still remains elusive whether these ITS-containing units are associated with programmed DNA elimination, but they may facilitate new telomere formation after DNA elimination. Our genomic resources for Mesorhabditis can aid in understanding how its distinct phenotypes have evolved.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.