S. Aveni , M. Laiolo , A. Campus , F. Massimetti , D. Coppola
{"title":"TIRVolcH:火山热点热红外识别。一种基于单波段热红外的算法,用于探测火山区域从低到高的热异常。","authors":"S. Aveni , M. Laiolo , A. Campus , F. Massimetti , D. Coppola","doi":"10.1016/j.rse.2024.114388","DOIUrl":null,"url":null,"abstract":"<div><div>Detecting early signs of impending eruptions and monitoring the evolution of volcanic phenomena are fundamental objectives of applied volcanology, both essential for timely assessment of associated hazards. Thermal remote sensing proves to be a cost-effective, yet reliable, information source for these purposes, especially for the hundreds of volcanoes still lacking conventional ground-based monitoring networks. In this work, we present an innovative and effective single band TIR-based (11.45 μm) algorithm (TIRVolcH), capable of detecting thermal anomalies in a broad range of volcanic settings, from low-temperature hydrothermal systems to high-temperature effusive events. Based on the processing of Visible Infrared Imaging Radiometer Suite (VIIRS) scenes, the algorithm offers an unprecedented trade-off between spatial (375 m) and temporal resolution (multiple acquisitions per day), having the potential to detect thermal anomalies for pixel-integrated temperatures as low as 0.5 K above the background, while maintaining a false positive rate of ∼1.8 %. The analysis of decadal time series of VIIRS data (2012−2023), acquired at three different volcanoes, reveals how the algorithm can: (i) detect hydrothermal crises at fumarolic fields (Vulcano, Italy), (ii) unveil thermal unrest preceding dome extrusions and explosive eruptions (Agung, Indonesia), and (iii) spatially trace lava flows extent and quantify their advancement rate, as well as track their long-term cooling behaviour (La Palma, Spain).</div><div>We envisage that the algorithm will prove instrumental for detecting early signs of volcanic activity and following the evolution of eruptive phenomena, providing a useful tool for hazard management and risk reduction applications. Furthermore, the compilation of statistically robust multidecadal thermal datasets will provide novel insights and new perspectives into volcano monitoring, laying the ground for forthcoming higher-resolution TIR missions.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114388"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TIRVolcH: Thermal Infrared Recognition of Volcanic Hotspots. A single band TIR-based algorithm to detect low-to-high thermal anomalies in volcanic regions.\",\"authors\":\"S. Aveni , M. Laiolo , A. Campus , F. Massimetti , D. Coppola\",\"doi\":\"10.1016/j.rse.2024.114388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Detecting early signs of impending eruptions and monitoring the evolution of volcanic phenomena are fundamental objectives of applied volcanology, both essential for timely assessment of associated hazards. Thermal remote sensing proves to be a cost-effective, yet reliable, information source for these purposes, especially for the hundreds of volcanoes still lacking conventional ground-based monitoring networks. In this work, we present an innovative and effective single band TIR-based (11.45 μm) algorithm (TIRVolcH), capable of detecting thermal anomalies in a broad range of volcanic settings, from low-temperature hydrothermal systems to high-temperature effusive events. Based on the processing of Visible Infrared Imaging Radiometer Suite (VIIRS) scenes, the algorithm offers an unprecedented trade-off between spatial (375 m) and temporal resolution (multiple acquisitions per day), having the potential to detect thermal anomalies for pixel-integrated temperatures as low as 0.5 K above the background, while maintaining a false positive rate of ∼1.8 %. The analysis of decadal time series of VIIRS data (2012−2023), acquired at three different volcanoes, reveals how the algorithm can: (i) detect hydrothermal crises at fumarolic fields (Vulcano, Italy), (ii) unveil thermal unrest preceding dome extrusions and explosive eruptions (Agung, Indonesia), and (iii) spatially trace lava flows extent and quantify their advancement rate, as well as track their long-term cooling behaviour (La Palma, Spain).</div><div>We envisage that the algorithm will prove instrumental for detecting early signs of volcanic activity and following the evolution of eruptive phenomena, providing a useful tool for hazard management and risk reduction applications. Furthermore, the compilation of statistically robust multidecadal thermal datasets will provide novel insights and new perspectives into volcano monitoring, laying the ground for forthcoming higher-resolution TIR missions.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"315 \",\"pages\":\"Article 114388\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724004140\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004140","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
TIRVolcH: Thermal Infrared Recognition of Volcanic Hotspots. A single band TIR-based algorithm to detect low-to-high thermal anomalies in volcanic regions.
Detecting early signs of impending eruptions and monitoring the evolution of volcanic phenomena are fundamental objectives of applied volcanology, both essential for timely assessment of associated hazards. Thermal remote sensing proves to be a cost-effective, yet reliable, information source for these purposes, especially for the hundreds of volcanoes still lacking conventional ground-based monitoring networks. In this work, we present an innovative and effective single band TIR-based (11.45 μm) algorithm (TIRVolcH), capable of detecting thermal anomalies in a broad range of volcanic settings, from low-temperature hydrothermal systems to high-temperature effusive events. Based on the processing of Visible Infrared Imaging Radiometer Suite (VIIRS) scenes, the algorithm offers an unprecedented trade-off between spatial (375 m) and temporal resolution (multiple acquisitions per day), having the potential to detect thermal anomalies for pixel-integrated temperatures as low as 0.5 K above the background, while maintaining a false positive rate of ∼1.8 %. The analysis of decadal time series of VIIRS data (2012−2023), acquired at three different volcanoes, reveals how the algorithm can: (i) detect hydrothermal crises at fumarolic fields (Vulcano, Italy), (ii) unveil thermal unrest preceding dome extrusions and explosive eruptions (Agung, Indonesia), and (iii) spatially trace lava flows extent and quantify their advancement rate, as well as track their long-term cooling behaviour (La Palma, Spain).
We envisage that the algorithm will prove instrumental for detecting early signs of volcanic activity and following the evolution of eruptive phenomena, providing a useful tool for hazard management and risk reduction applications. Furthermore, the compilation of statistically robust multidecadal thermal datasets will provide novel insights and new perspectives into volcano monitoring, laying the ground for forthcoming higher-resolution TIR missions.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.