作为高容量阴极材料的高缺陷和导电铜掺杂 1T/2H-MoS2 纳米片,用于增强镁离子储存功能

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Ao Xu, Yan Liu, Jiahui Wang, Yijing Wang, Fuyi Jiang, Yanli Zhou
{"title":"作为高容量阴极材料的高缺陷和导电铜掺杂 1T/2H-MoS2 纳米片,用于增强镁离子储存功能","authors":"Ao Xu, Yan Liu, Jiahui Wang, Yijing Wang, Fuyi Jiang, Yanli Zhou","doi":"10.1039/d4qi02064b","DOIUrl":null,"url":null,"abstract":"Limited by the poor electronic conductivity and strong interaction between Mg2+ and MoS2, the 2H phase of MoS2 as the cathode materials exhibits a low capacity along with poor rate capability. How to adopt the structure engineering to largely boost the Mg2+ diffusion kinetics and enhance the reaction activity are the current tasks that need to be addressed. Herein, the cation doping strategy is adopted to elaborately design the defective Cu-doped metallic MoS2 nanosheets (Cu-MoS2) via a hydrothermal process. The Cu2+ doping widens the layer distance, induces the formation of metallic 1T phase of MoS2, and ameliorates the structural stability. Thus, the Mg2+ ions diffusion kinetics and the electronic conductivity of Cu-MoS2 are largely boosted. Meanwhile, the MgCl+ in the electrolyte can decrease the reaction energy barrier, and therefore fasten the electrochemical reaction. Therefore, the optimized Cu-MoS2 as the cathode materials toward magnesium ion batteries exerts remarkable magnesium storage properties, evidently superior to the pure MoS2. When cycled at 0.1 A g-1 over 100 cycles, the discharge capacity can reach as high as 369.5 mAh g-1. Even cycled at a high rate of 1 A g-1, the Cu-MoS2 maintains a specific capacity of 267.3 mAh g-1 over 200 long cycles. The related kinetics tests confirm its rapid reaction kinetics and pseudocapacitance dominated charge storage process. The ex-situ XPS and HRTEM data largely verify the conversion reaction mechanism of Cu-MoS2 during cycling. This work provides guidelines for the long-term development of MoS2 in the field of magnesium ion batteries.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly defective and conductive Cu-doped 1T/2H-MoS2 nanosheets as high-capacity cathode materials toward enhanced magnesium ion storage\",\"authors\":\"Ao Xu, Yan Liu, Jiahui Wang, Yijing Wang, Fuyi Jiang, Yanli Zhou\",\"doi\":\"10.1039/d4qi02064b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Limited by the poor electronic conductivity and strong interaction between Mg2+ and MoS2, the 2H phase of MoS2 as the cathode materials exhibits a low capacity along with poor rate capability. How to adopt the structure engineering to largely boost the Mg2+ diffusion kinetics and enhance the reaction activity are the current tasks that need to be addressed. Herein, the cation doping strategy is adopted to elaborately design the defective Cu-doped metallic MoS2 nanosheets (Cu-MoS2) via a hydrothermal process. The Cu2+ doping widens the layer distance, induces the formation of metallic 1T phase of MoS2, and ameliorates the structural stability. Thus, the Mg2+ ions diffusion kinetics and the electronic conductivity of Cu-MoS2 are largely boosted. Meanwhile, the MgCl+ in the electrolyte can decrease the reaction energy barrier, and therefore fasten the electrochemical reaction. Therefore, the optimized Cu-MoS2 as the cathode materials toward magnesium ion batteries exerts remarkable magnesium storage properties, evidently superior to the pure MoS2. When cycled at 0.1 A g-1 over 100 cycles, the discharge capacity can reach as high as 369.5 mAh g-1. Even cycled at a high rate of 1 A g-1, the Cu-MoS2 maintains a specific capacity of 267.3 mAh g-1 over 200 long cycles. The related kinetics tests confirm its rapid reaction kinetics and pseudocapacitance dominated charge storage process. The ex-situ XPS and HRTEM data largely verify the conversion reaction mechanism of Cu-MoS2 during cycling. This work provides guidelines for the long-term development of MoS2 in the field of magnesium ion batteries.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi02064b\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02064b","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

受限于较差的电子传导性以及 Mg2+ 与 MoS2 之间较强的相互作用,MoS2 的 2H 相作为阴极材料表现出较低的容量和较差的速率能力。如何通过结构工程来大幅提高 Mg2+ 扩散动力学,增强反应活性,是当前亟待解决的问题。本文采用阳离子掺杂策略,通过水热法精心设计了有缺陷的掺铜金属 MoS2 纳米片(Cu-MoS2)。Cu2+ 的掺杂拓宽了层间距,诱导了 MoS2 金属 1T 相的形成,并改善了结构的稳定性。因此,Cu-MoS2 的 Mg2+ 离子扩散动力学和电子导电性都得到了很大程度的提高。同时,电解质中的 MgCl+ 可以降低反应能垒,从而加速电化学反应。因此,优化后的 Cu-MoS2 作为镁离子电池的阴极材料具有显著的储镁性能,明显优于纯 MoS2。在 0.1 A g-1 的条件下循环 100 次,放电容量可高达 369.5 mAh g-1。即使以 1 A g-1 的高速率循环,Cu-MoS2 也能在 200 次长循环中保持 267.3 mAh g-1 的比容量。相关的动力学测试证实了其快速反应动力学和伪电容主导的电荷存储过程。原位 XPS 和 HRTEM 数据在很大程度上验证了 Cu-MoS2 在循环过程中的转化反应机制。这项工作为 MoS2 在镁离子电池领域的长期发展提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly defective and conductive Cu-doped 1T/2H-MoS2 nanosheets as high-capacity cathode materials toward enhanced magnesium ion storage
Limited by the poor electronic conductivity and strong interaction between Mg2+ and MoS2, the 2H phase of MoS2 as the cathode materials exhibits a low capacity along with poor rate capability. How to adopt the structure engineering to largely boost the Mg2+ diffusion kinetics and enhance the reaction activity are the current tasks that need to be addressed. Herein, the cation doping strategy is adopted to elaborately design the defective Cu-doped metallic MoS2 nanosheets (Cu-MoS2) via a hydrothermal process. The Cu2+ doping widens the layer distance, induces the formation of metallic 1T phase of MoS2, and ameliorates the structural stability. Thus, the Mg2+ ions diffusion kinetics and the electronic conductivity of Cu-MoS2 are largely boosted. Meanwhile, the MgCl+ in the electrolyte can decrease the reaction energy barrier, and therefore fasten the electrochemical reaction. Therefore, the optimized Cu-MoS2 as the cathode materials toward magnesium ion batteries exerts remarkable magnesium storage properties, evidently superior to the pure MoS2. When cycled at 0.1 A g-1 over 100 cycles, the discharge capacity can reach as high as 369.5 mAh g-1. Even cycled at a high rate of 1 A g-1, the Cu-MoS2 maintains a specific capacity of 267.3 mAh g-1 over 200 long cycles. The related kinetics tests confirm its rapid reaction kinetics and pseudocapacitance dominated charge storage process. The ex-situ XPS and HRTEM data largely verify the conversion reaction mechanism of Cu-MoS2 during cycling. This work provides guidelines for the long-term development of MoS2 in the field of magnesium ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信