Colin R. Tosh, Tom Staton, Ambrogio Costanzo, Will Simonson
{"title":"英国有机可造林农林的生物压力和产量稳定性","authors":"Colin R. Tosh, Tom Staton, Ambrogio Costanzo, Will Simonson","doi":"10.1007/s13593-024-00979-z","DOIUrl":null,"url":null,"abstract":"<div><p>In-field trees are thought to buffer arable crops from climate extremes through the creation of microclimates that may reduce the impacts of heat, wind, and cold. Much less is known about how trees and their biotic interactions (e.g. with natural enemies of pests and wild understory plants) impact crop yield stability to biotic stresses such as crop pests and disease. Modelling these interactions using conventional approaches is complex and time consuming, and we take a simplified approach, representing the agroecosystem as a Boolean regulatory network and parameterising Boolean functions using expert opinion. This allies our approach with decision analysis, which is increasingly finding applications in agriculture. Despite the naivety of our model, we demonstrate that it outputs complex and realistic agroecosystem dynamics. It predicts that, in English silvoarable, the biotic interactions of in-field trees boost arable crop yield overall, but they do not increase yield stability to biotic stress. Sensitivity analysis shows that arable crop yield is very sensitive to disease and weeds. We suggest that the focus of studies and debate on ecosystem service provision by English agroforestry needs to shift from natural enemies and pests to these ecosystem components. We discuss how our model can be improved through validation and parameterisation using real field data. Finally, we discuss how our approach can be used to rapidly model systems (agricultural or otherwise) than can be represented as dynamic interaction networks.</p></div>","PeriodicalId":7721,"journal":{"name":"Agronomy for Sustainable Development","volume":"44 5","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13593-024-00979-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Biotic stress and yield stability in English organic silvoarable agroforestry\",\"authors\":\"Colin R. Tosh, Tom Staton, Ambrogio Costanzo, Will Simonson\",\"doi\":\"10.1007/s13593-024-00979-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In-field trees are thought to buffer arable crops from climate extremes through the creation of microclimates that may reduce the impacts of heat, wind, and cold. Much less is known about how trees and their biotic interactions (e.g. with natural enemies of pests and wild understory plants) impact crop yield stability to biotic stresses such as crop pests and disease. Modelling these interactions using conventional approaches is complex and time consuming, and we take a simplified approach, representing the agroecosystem as a Boolean regulatory network and parameterising Boolean functions using expert opinion. This allies our approach with decision analysis, which is increasingly finding applications in agriculture. Despite the naivety of our model, we demonstrate that it outputs complex and realistic agroecosystem dynamics. It predicts that, in English silvoarable, the biotic interactions of in-field trees boost arable crop yield overall, but they do not increase yield stability to biotic stress. Sensitivity analysis shows that arable crop yield is very sensitive to disease and weeds. We suggest that the focus of studies and debate on ecosystem service provision by English agroforestry needs to shift from natural enemies and pests to these ecosystem components. We discuss how our model can be improved through validation and parameterisation using real field data. Finally, we discuss how our approach can be used to rapidly model systems (agricultural or otherwise) than can be represented as dynamic interaction networks.</p></div>\",\"PeriodicalId\":7721,\"journal\":{\"name\":\"Agronomy for Sustainable Development\",\"volume\":\"44 5\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13593-024-00979-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy for Sustainable Development\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13593-024-00979-z\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy for Sustainable Development","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s13593-024-00979-z","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Biotic stress and yield stability in English organic silvoarable agroforestry
In-field trees are thought to buffer arable crops from climate extremes through the creation of microclimates that may reduce the impacts of heat, wind, and cold. Much less is known about how trees and their biotic interactions (e.g. with natural enemies of pests and wild understory plants) impact crop yield stability to biotic stresses such as crop pests and disease. Modelling these interactions using conventional approaches is complex and time consuming, and we take a simplified approach, representing the agroecosystem as a Boolean regulatory network and parameterising Boolean functions using expert opinion. This allies our approach with decision analysis, which is increasingly finding applications in agriculture. Despite the naivety of our model, we demonstrate that it outputs complex and realistic agroecosystem dynamics. It predicts that, in English silvoarable, the biotic interactions of in-field trees boost arable crop yield overall, but they do not increase yield stability to biotic stress. Sensitivity analysis shows that arable crop yield is very sensitive to disease and weeds. We suggest that the focus of studies and debate on ecosystem service provision by English agroforestry needs to shift from natural enemies and pests to these ecosystem components. We discuss how our model can be improved through validation and parameterisation using real field data. Finally, we discuss how our approach can be used to rapidly model systems (agricultural or otherwise) than can be represented as dynamic interaction networks.
期刊介绍:
Agronomy for Sustainable Development (ASD) is a peer-reviewed scientific journal of international scope, dedicated to publishing original research articles, review articles, and meta-analyses aimed at improving sustainability in agricultural and food systems. The journal serves as a bridge between agronomy, cropping, and farming system research and various other disciplines including ecology, genetics, economics, and social sciences.
ASD encourages studies in agroecology, participatory research, and interdisciplinary approaches, with a focus on systems thinking applied at different scales from field to global levels.
Research articles published in ASD should present significant scientific advancements compared to existing knowledge, within an international context. Review articles should critically evaluate emerging topics, and opinion papers may also be submitted as reviews. Meta-analysis articles should provide clear contributions to resolving widely debated scientific questions.