Syed Taimoor Hussain Shah, Syed Adil Hussain Shah, Iqra Iqbal Khan, Atif Imran, Syed Baqir Hussain Shah, Atif Mehmood, Shahzad Ahmad Qureshi, Mudassar Raza, Angelo Di Terlizzi, Marco Cavaglià, Marco Agostino Deriu
{"title":"肺部成像领域的数据驱动分类和可解释人工智能。","authors":"Syed Taimoor Hussain Shah, Syed Adil Hussain Shah, Iqra Iqbal Khan, Atif Imran, Syed Baqir Hussain Shah, Atif Mehmood, Shahzad Ahmad Qureshi, Mudassar Raza, Angelo Di Terlizzi, Marco Cavaglià, Marco Agostino Deriu","doi":"10.3389/fdata.2024.1393758","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting lung diseases in medical images can be quite challenging for radiologists. In some cases, even experienced experts may struggle with accurately diagnosing chest diseases, leading to potential inaccuracies due to complex or unseen biomarkers. This review paper delves into various datasets and machine learning techniques employed in recent research for lung disease classification, focusing on pneumonia analysis using chest X-ray images. We explore conventional machine learning methods, pretrained deep learning models, customized convolutional neural networks (CNNs), and ensemble methods. A comprehensive comparison of different classification approaches is presented, encompassing data acquisition, preprocessing, feature extraction, and classification using machine vision, machine and deep learning, and explainable-AI (XAI). Our analysis highlights the superior performance of transfer learning-based methods using CNNs and ensemble models/features for lung disease classification. In addition, our comprehensive review offers insights for researchers in other medical domains too who utilize radiological images. By providing a thorough overview of various techniques, our work enables the establishment of effective strategies and identification of suitable methods for a wide range of challenges. Currently, beyond traditional evaluation metrics, researchers emphasize the importance of XAI techniques in machine and deep learning models and their applications in classification tasks. This incorporation helps in gaining a deeper understanding of their decision-making processes, leading to improved trust, transparency, and overall clinical decision-making. Our comprehensive review serves as a valuable resource for researchers and practitioners seeking not only to advance the field of lung disease detection using machine learning and XAI but also from other diverse domains.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1393758"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446784/pdf/","citationCount":"0","resultStr":"{\"title\":\"Data-driven classification and explainable-AI in the field of lung imaging.\",\"authors\":\"Syed Taimoor Hussain Shah, Syed Adil Hussain Shah, Iqra Iqbal Khan, Atif Imran, Syed Baqir Hussain Shah, Atif Mehmood, Shahzad Ahmad Qureshi, Mudassar Raza, Angelo Di Terlizzi, Marco Cavaglià, Marco Agostino Deriu\",\"doi\":\"10.3389/fdata.2024.1393758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detecting lung diseases in medical images can be quite challenging for radiologists. In some cases, even experienced experts may struggle with accurately diagnosing chest diseases, leading to potential inaccuracies due to complex or unseen biomarkers. This review paper delves into various datasets and machine learning techniques employed in recent research for lung disease classification, focusing on pneumonia analysis using chest X-ray images. We explore conventional machine learning methods, pretrained deep learning models, customized convolutional neural networks (CNNs), and ensemble methods. A comprehensive comparison of different classification approaches is presented, encompassing data acquisition, preprocessing, feature extraction, and classification using machine vision, machine and deep learning, and explainable-AI (XAI). Our analysis highlights the superior performance of transfer learning-based methods using CNNs and ensemble models/features for lung disease classification. In addition, our comprehensive review offers insights for researchers in other medical domains too who utilize radiological images. By providing a thorough overview of various techniques, our work enables the establishment of effective strategies and identification of suitable methods for a wide range of challenges. Currently, beyond traditional evaluation metrics, researchers emphasize the importance of XAI techniques in machine and deep learning models and their applications in classification tasks. This incorporation helps in gaining a deeper understanding of their decision-making processes, leading to improved trust, transparency, and overall clinical decision-making. Our comprehensive review serves as a valuable resource for researchers and practitioners seeking not only to advance the field of lung disease detection using machine learning and XAI but also from other diverse domains.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"7 \",\"pages\":\"1393758\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446784/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2024.1393758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1393758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
对于放射科医生来说,在医学影像中检测肺部疾病是一项相当具有挑战性的工作。在某些情况下,即使是经验丰富的专家也很难准确诊断胸部疾病,因为复杂或未见的生物标志物可能会导致诊断不准确。本综述论文深入探讨了近期研究中用于肺部疾病分类的各种数据集和机器学习技术,重点是使用胸部 X 光图像进行肺炎分析。我们探讨了传统机器学习方法、预训练深度学习模型、定制卷积神经网络(CNN)和集合方法。我们对不同的分类方法进行了全面比较,包括数据采集、预处理、特征提取,以及使用机器视觉、机器学习、深度学习和可解释人工智能(XAI)进行分类。我们的分析强调了基于迁移学习的方法(使用 CNN 和集合模型/特征)在肺病分类方面的卓越性能。此外,我们的全面综述还为其他医疗领域利用放射图像的研究人员提供了启示。通过对各种技术的全面概述,我们的工作有助于建立有效的策略,并针对广泛的挑战确定合适的方法。目前,除了传统的评估指标外,研究人员还强调了 XAI 技术在机器学习和深度学习模型中的重要性及其在分类任务中的应用。这种结合有助于更深入地了解他们的决策过程,从而提高信任度、透明度和整体临床决策水平。我们的综合综述不仅为寻求利用机器学习和 XAI 推动肺病检测领域发展的研究人员和从业人员提供了宝贵的资源,也为其他不同领域的研究人员和从业人员提供了宝贵的资源。
Data-driven classification and explainable-AI in the field of lung imaging.
Detecting lung diseases in medical images can be quite challenging for radiologists. In some cases, even experienced experts may struggle with accurately diagnosing chest diseases, leading to potential inaccuracies due to complex or unseen biomarkers. This review paper delves into various datasets and machine learning techniques employed in recent research for lung disease classification, focusing on pneumonia analysis using chest X-ray images. We explore conventional machine learning methods, pretrained deep learning models, customized convolutional neural networks (CNNs), and ensemble methods. A comprehensive comparison of different classification approaches is presented, encompassing data acquisition, preprocessing, feature extraction, and classification using machine vision, machine and deep learning, and explainable-AI (XAI). Our analysis highlights the superior performance of transfer learning-based methods using CNNs and ensemble models/features for lung disease classification. In addition, our comprehensive review offers insights for researchers in other medical domains too who utilize radiological images. By providing a thorough overview of various techniques, our work enables the establishment of effective strategies and identification of suitable methods for a wide range of challenges. Currently, beyond traditional evaluation metrics, researchers emphasize the importance of XAI techniques in machine and deep learning models and their applications in classification tasks. This incorporation helps in gaining a deeper understanding of their decision-making processes, leading to improved trust, transparency, and overall clinical decision-making. Our comprehensive review serves as a valuable resource for researchers and practitioners seeking not only to advance the field of lung disease detection using machine learning and XAI but also from other diverse domains.