{"title":"用于高效阿尔茨海默病分类的视觉转换器架构集合。","authors":"Noushath Shaffi, Vimbi Viswan, Mufti Mahmud","doi":"10.1186/s40708-024-00238-7","DOIUrl":null,"url":null,"abstract":"<p><p>Transformers have dominated the landscape of Natural Language Processing (NLP) and revolutionalized generative AI applications. Vision Transformers (VT) have recently become a new state-of-the-art for computer vision applications. Motivated by the success of VTs in capturing short and long-range dependencies and their ability to handle class imbalance, this paper proposes an ensemble framework of VTs for the efficient classification of Alzheimer's Disease (AD). The framework consists of four vanilla VTs, and ensembles formed using hard and soft-voting approaches. The proposed model was tested using two popular AD datasets: OASIS and ADNI. The ADNI dataset was employed to assess the models' efficacy under imbalanced and data-scarce conditions. The ensemble of VT saw an improvement of around 2% compared to individual models. Furthermore, the results are compared with state-of-the-art and custom-built Convolutional Neural Network (CNN) architectures and Machine Learning (ML) models under varying data conditions. The experimental results demonstrated an overall performance gain of 4.14% and 4.72% accuracy over the ML and CNN algorithms, respectively. The study has also identified specific limitations and proposes avenues for future research. The codes used in the study are made publicly available.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"25"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450128/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification.\",\"authors\":\"Noushath Shaffi, Vimbi Viswan, Mufti Mahmud\",\"doi\":\"10.1186/s40708-024-00238-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transformers have dominated the landscape of Natural Language Processing (NLP) and revolutionalized generative AI applications. Vision Transformers (VT) have recently become a new state-of-the-art for computer vision applications. Motivated by the success of VTs in capturing short and long-range dependencies and their ability to handle class imbalance, this paper proposes an ensemble framework of VTs for the efficient classification of Alzheimer's Disease (AD). The framework consists of four vanilla VTs, and ensembles formed using hard and soft-voting approaches. The proposed model was tested using two popular AD datasets: OASIS and ADNI. The ADNI dataset was employed to assess the models' efficacy under imbalanced and data-scarce conditions. The ensemble of VT saw an improvement of around 2% compared to individual models. Furthermore, the results are compared with state-of-the-art and custom-built Convolutional Neural Network (CNN) architectures and Machine Learning (ML) models under varying data conditions. The experimental results demonstrated an overall performance gain of 4.14% and 4.72% accuracy over the ML and CNN algorithms, respectively. The study has also identified specific limitations and proposes avenues for future research. The codes used in the study are made publicly available.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"11 1\",\"pages\":\"25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00238-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00238-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
摘要
变形器在自然语言处理(NLP)领域占据了主导地位,并彻底改变了生成式人工智能的应用。最近,视觉变换器(VT)已成为计算机视觉应用领域的最新技术。受视觉变换器成功捕捉短程和长程依赖关系及其处理类不平衡能力的激励,本文提出了一个视觉变换器集合框架,用于对阿尔茨海默病(AD)进行高效分类。该框架由四个虚构 VT 和使用硬投票和软投票方法形成的集合组成。我们使用两个流行的 AD 数据集对所提出的模型进行了测试:OASIS 和 ADNI。ADNI 数据集用于评估模型在不平衡和数据稀缺条件下的功效。与单个模型相比,VT 集合提高了约 2%。此外,在不同的数据条件下,实验结果还与最先进的和定制的卷积神经网络(CNN)架构和机器学习(ML)模型进行了比较。实验结果表明,与 ML 和 CNN 算法相比,总体性能分别提高了 4.14% 和 4.72% 的准确率。该研究还指出了具体的局限性,并提出了未来的研究方向。研究中使用的代码已公开。
Ensemble of vision transformer architectures for efficient Alzheimer's Disease classification.
Transformers have dominated the landscape of Natural Language Processing (NLP) and revolutionalized generative AI applications. Vision Transformers (VT) have recently become a new state-of-the-art for computer vision applications. Motivated by the success of VTs in capturing short and long-range dependencies and their ability to handle class imbalance, this paper proposes an ensemble framework of VTs for the efficient classification of Alzheimer's Disease (AD). The framework consists of four vanilla VTs, and ensembles formed using hard and soft-voting approaches. The proposed model was tested using two popular AD datasets: OASIS and ADNI. The ADNI dataset was employed to assess the models' efficacy under imbalanced and data-scarce conditions. The ensemble of VT saw an improvement of around 2% compared to individual models. Furthermore, the results are compared with state-of-the-art and custom-built Convolutional Neural Network (CNN) architectures and Machine Learning (ML) models under varying data conditions. The experimental results demonstrated an overall performance gain of 4.14% and 4.72% accuracy over the ML and CNN algorithms, respectively. The study has also identified specific limitations and proposes avenues for future research. The codes used in the study are made publicly available.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing