用ThUBD超强纯化变性重折叠泛素化蛋白,揭示了肝纤维化中泛素组的功能障碍。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xinyu Cheng, Yonghong Wang, Jinfang Liu, Ying Wu, Zhenpeng Zhang, Hui Liu, Lantian Tian, Li Zhang, Lei Chang, Ping Xu, Lingqiang Zhang, Yanchang Li
{"title":"用ThUBD超强纯化变性重折叠泛素化蛋白,揭示了肝纤维化中泛素组的功能障碍。","authors":"Xinyu Cheng, Yonghong Wang, Jinfang Liu, Ying Wu, Zhenpeng Zhang, Hui Liu, Lantian Tian, Li Zhang, Lei Chang, Ping Xu, Lingqiang Zhang, Yanchang Li","doi":"10.1016/j.mcpro.2024.100852","DOIUrl":null,"url":null,"abstract":"<p><p>Ubiquitination is crucial for maintaining protein homeostasis and plays a vital role in diverse biological processes. Ubiquitinome profiling and quantification are of great scientific significance. Artificial ubiquitin-binding domains (UBDs) have been widely employed to capture ubiquitinated proteins. The success of this enrichment relies on recognizing native spatial structures of ubiquitin and ubiquitin chains by UBDs under native conditions. However, the use of native lysis conditions presents significant challenges, including insufficient protein extraction, heightened activity of deubiquitinating enzymes and proteasomes in removing the ubiquitin signal, and purification of a substantial number of contaminant proteins, all of which undermine the robustness and reproducibility of ubiquitinomics. In this study, we introduced a novel approach that combines denatured-refolded ubiquitinated sample preparation (DRUSP) with a tandem hybrid UBD for ubiquitinomic analysis. The samples were effectively extracted using strongly denatured buffers and subsequently refolded using filters. DRUSP yielded a significantly stronger ubiquitin signal, nearly three times greater than that of the Control method. Then, eight types of ubiquitin chains were quickly and accurately restored; therefore, they were recognized and enriched by tandem hybrid UBD with high efficiency and no biases. Compared with the Control method, DRUSP showed extremely high efficiency in enriching ubiquitinated proteins, improving overall ubiquitin signal enrichment by approximately 10-fold. Moreover, when combined with ubiquitin chain-specific UBDs, DRUSP had also been proven to be a versatile approach. This new method significantly enhanced the stability and reproducibility of ubiquitinomics research. Finally, DRUSP was successfully applied to deep ubiquitinome profiling of early mouse liver fibrosis with increased accuracy, revealing novel insights for liver fibrosis research.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100852"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Super Enhanced Purification of Denatured-Refolded Ubiquitinated Proteins by ThUBD Revealed Ubiquitinome Dysfunction in Liver Fibrosis.\",\"authors\":\"Xinyu Cheng, Yonghong Wang, Jinfang Liu, Ying Wu, Zhenpeng Zhang, Hui Liu, Lantian Tian, Li Zhang, Lei Chang, Ping Xu, Lingqiang Zhang, Yanchang Li\",\"doi\":\"10.1016/j.mcpro.2024.100852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ubiquitination is crucial for maintaining protein homeostasis and plays a vital role in diverse biological processes. Ubiquitinome profiling and quantification are of great scientific significance. Artificial ubiquitin-binding domains (UBDs) have been widely employed to capture ubiquitinated proteins. The success of this enrichment relies on recognizing native spatial structures of ubiquitin and ubiquitin chains by UBDs under native conditions. However, the use of native lysis conditions presents significant challenges, including insufficient protein extraction, heightened activity of deubiquitinating enzymes and proteasomes in removing the ubiquitin signal, and purification of a substantial number of contaminant proteins, all of which undermine the robustness and reproducibility of ubiquitinomics. In this study, we introduced a novel approach that combines denatured-refolded ubiquitinated sample preparation (DRUSP) with a tandem hybrid UBD for ubiquitinomic analysis. The samples were effectively extracted using strongly denatured buffers and subsequently refolded using filters. DRUSP yielded a significantly stronger ubiquitin signal, nearly three times greater than that of the Control method. Then, eight types of ubiquitin chains were quickly and accurately restored; therefore, they were recognized and enriched by tandem hybrid UBD with high efficiency and no biases. Compared with the Control method, DRUSP showed extremely high efficiency in enriching ubiquitinated proteins, improving overall ubiquitin signal enrichment by approximately 10-fold. Moreover, when combined with ubiquitin chain-specific UBDs, DRUSP had also been proven to be a versatile approach. This new method significantly enhanced the stability and reproducibility of ubiquitinomics research. Finally, DRUSP was successfully applied to deep ubiquitinome profiling of early mouse liver fibrosis with increased accuracy, revealing novel insights for liver fibrosis research.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100852\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100852\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100852","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

泛素化是维持蛋白质平衡的关键,在多种生物过程中发挥着重要作用。泛素组的分析和定量具有重要的科学意义。人工泛素结合域(UBDs)已被广泛用于捕获泛素化蛋白质。这种富集方法的成功依赖于 UBDs 在原生条件下识别泛素和泛素链的原生空间结构。然而,原生裂解条件的使用带来了巨大的挑战,包括蛋白质提取不足、去泛素化酶(DUB)和蛋白酶体去除泛素信号的活性增强以及大量杂质蛋白的纯化,所有这些都破坏了泛素组学的稳健性和可重复性。在这项研究中,我们引入了一种新方法,将变性重折叠泛素样品制备(DRUSP)与串联杂交 UBD(ThUBD)相结合,用于泛素组学分析。样品使用强变性缓冲液进行有效提取,然后使用过滤器进行重折叠。DRUSP 产生的泛素信号明显更强,是对照方法的近 3 倍。随后,8 种泛素链被快速、准确地还原,从而被 ThUBD 高效、无偏差地识别和富集。与对照方法相比,DRUSP 在富集泛素化蛋白质方面表现出极高的效率,使整体泛素信号富集率提高了约 10 倍。此外,当与泛素链特异性 UBDs 结合使用时,DRUSP 也被证明是一种多功能方法。这种新方法大大提高了泛素组学研究的稳定性和可重复性。最后,DRUSP 成功应用于早期小鼠肝纤维化的泛素组深度分析,提高了准确性,为肝纤维化研究提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Super Enhanced Purification of Denatured-Refolded Ubiquitinated Proteins by ThUBD Revealed Ubiquitinome Dysfunction in Liver Fibrosis.

Ubiquitination is crucial for maintaining protein homeostasis and plays a vital role in diverse biological processes. Ubiquitinome profiling and quantification are of great scientific significance. Artificial ubiquitin-binding domains (UBDs) have been widely employed to capture ubiquitinated proteins. The success of this enrichment relies on recognizing native spatial structures of ubiquitin and ubiquitin chains by UBDs under native conditions. However, the use of native lysis conditions presents significant challenges, including insufficient protein extraction, heightened activity of deubiquitinating enzymes and proteasomes in removing the ubiquitin signal, and purification of a substantial number of contaminant proteins, all of which undermine the robustness and reproducibility of ubiquitinomics. In this study, we introduced a novel approach that combines denatured-refolded ubiquitinated sample preparation (DRUSP) with a tandem hybrid UBD for ubiquitinomic analysis. The samples were effectively extracted using strongly denatured buffers and subsequently refolded using filters. DRUSP yielded a significantly stronger ubiquitin signal, nearly three times greater than that of the Control method. Then, eight types of ubiquitin chains were quickly and accurately restored; therefore, they were recognized and enriched by tandem hybrid UBD with high efficiency and no biases. Compared with the Control method, DRUSP showed extremely high efficiency in enriching ubiquitinated proteins, improving overall ubiquitin signal enrichment by approximately 10-fold. Moreover, when combined with ubiquitin chain-specific UBDs, DRUSP had also been proven to be a versatile approach. This new method significantly enhanced the stability and reproducibility of ubiquitinomics research. Finally, DRUSP was successfully applied to deep ubiquitinome profiling of early mouse liver fibrosis with increased accuracy, revealing novel insights for liver fibrosis research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信