{"title":"89Zr标记的DFO@Durvalumab-HSA纳米颗粒:体外治疗三阴性乳腺癌的潜力","authors":"Fatma Yurt, Derya Özel, Şeyma Karagül, Ayça Tunçel, Kübra Durkan, Emin İlker Medine","doi":"10.1002/ddr.22266","DOIUrl":null,"url":null,"abstract":"<p>This study presents the development and evaluation of a DFO@mAb-NP (DFO@Durvalumab-HSA-DTX nanoparticle) nanoplatform for imaging in triple-negative breast cancer (TNBC). The nanoplatform demonstrated significant changes postconjugation with DFO, evidenced by increased particle size from 178.1 ± 5 nm to 311 ± 26 nm and zeta potential alteration from −31.9 ± 3 mV to −40.5 ± 0.8 mV. Fourier-transform infrared spectroscopy and ultraviolet spectral analyses confirmed successful DFO conjugation, with notable shifts in peak wavelengths. High labeling efficiency was achieved with <sup>89</sup>Zr, as indicated by thin layer radio chromatography and high-performance liquid radio chromatography results, with labeling efficiencies of 98 ± 2% for <sup>89</sup>Zr-DFO@mAb and 96 ± 3% for <sup>89</sup>Zr-DFO@mAb-NP. The nanoplatforms maintained stability over 24 h, showing less than 5% degradation. Lipophilicity assays revealed logP values of 0.5 ± 0.03 for <sup>89</sup>Zr-DFO@mAb-NP and 0.98 ± 0.2 for <sup>89</sup>Zr-DFO@mAb, indicating a higher lipophilic tendency in the radiolabeled Durvalumab. Cell uptake experiments showed an initial high uptake in MDA-MB-468 cells (45.1 ± 3.2%), which decreased over time, highlighting receptor-specific interactions. These comprehensive findings suggest the promising potential of the DFO@mAb-NP nanoplatform for targeted imaging in TNBC, with implications for improved diagnostic accuracy and treatment strategies.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"85 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"89Zr-Labeled DFO@Durvalumab-HSA nanoparticles: In vitro potential for triple-negative breast cancer\",\"authors\":\"Fatma Yurt, Derya Özel, Şeyma Karagül, Ayça Tunçel, Kübra Durkan, Emin İlker Medine\",\"doi\":\"10.1002/ddr.22266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents the development and evaluation of a DFO@mAb-NP (DFO@Durvalumab-HSA-DTX nanoparticle) nanoplatform for imaging in triple-negative breast cancer (TNBC). The nanoplatform demonstrated significant changes postconjugation with DFO, evidenced by increased particle size from 178.1 ± 5 nm to 311 ± 26 nm and zeta potential alteration from −31.9 ± 3 mV to −40.5 ± 0.8 mV. Fourier-transform infrared spectroscopy and ultraviolet spectral analyses confirmed successful DFO conjugation, with notable shifts in peak wavelengths. High labeling efficiency was achieved with <sup>89</sup>Zr, as indicated by thin layer radio chromatography and high-performance liquid radio chromatography results, with labeling efficiencies of 98 ± 2% for <sup>89</sup>Zr-DFO@mAb and 96 ± 3% for <sup>89</sup>Zr-DFO@mAb-NP. The nanoplatforms maintained stability over 24 h, showing less than 5% degradation. Lipophilicity assays revealed logP values of 0.5 ± 0.03 for <sup>89</sup>Zr-DFO@mAb-NP and 0.98 ± 0.2 for <sup>89</sup>Zr-DFO@mAb, indicating a higher lipophilic tendency in the radiolabeled Durvalumab. Cell uptake experiments showed an initial high uptake in MDA-MB-468 cells (45.1 ± 3.2%), which decreased over time, highlighting receptor-specific interactions. These comprehensive findings suggest the promising potential of the DFO@mAb-NP nanoplatform for targeted imaging in TNBC, with implications for improved diagnostic accuracy and treatment strategies.</p>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":\"85 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22266\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22266","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
89Zr-Labeled DFO@Durvalumab-HSA nanoparticles: In vitro potential for triple-negative breast cancer
This study presents the development and evaluation of a DFO@mAb-NP (DFO@Durvalumab-HSA-DTX nanoparticle) nanoplatform for imaging in triple-negative breast cancer (TNBC). The nanoplatform demonstrated significant changes postconjugation with DFO, evidenced by increased particle size from 178.1 ± 5 nm to 311 ± 26 nm and zeta potential alteration from −31.9 ± 3 mV to −40.5 ± 0.8 mV. Fourier-transform infrared spectroscopy and ultraviolet spectral analyses confirmed successful DFO conjugation, with notable shifts in peak wavelengths. High labeling efficiency was achieved with 89Zr, as indicated by thin layer radio chromatography and high-performance liquid radio chromatography results, with labeling efficiencies of 98 ± 2% for 89Zr-DFO@mAb and 96 ± 3% for 89Zr-DFO@mAb-NP. The nanoplatforms maintained stability over 24 h, showing less than 5% degradation. Lipophilicity assays revealed logP values of 0.5 ± 0.03 for 89Zr-DFO@mAb-NP and 0.98 ± 0.2 for 89Zr-DFO@mAb, indicating a higher lipophilic tendency in the radiolabeled Durvalumab. Cell uptake experiments showed an initial high uptake in MDA-MB-468 cells (45.1 ± 3.2%), which decreased over time, highlighting receptor-specific interactions. These comprehensive findings suggest the promising potential of the DFO@mAb-NP nanoplatform for targeted imaging in TNBC, with implications for improved diagnostic accuracy and treatment strategies.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.