Xiayu Xu, Qilong Bu, Jingmeng Xie, Hang Li, Feng Xu, Jing Li
{"title":"使用智能手机捕捉的彩色烧伤创面图像进行现场烧伤严重程度评估。","authors":"Xiayu Xu, Qilong Bu, Jingmeng Xie, Hang Li, Feng Xu, Jing Li","doi":"10.1016/j.compbiomed.2024.109171","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate assessment of burn severity is crucial for the management of burn injuries. Currently, clinicians mainly rely on visual inspection to assess burns, characterized by notable inter-observer discrepancies. In this study, we introduce an innovative analysis platform using color burn wound images for automatic burn severity assessment. To do this, we propose a novel joint-task deep learning model, which is capable of simultaneously segmenting both burn regions and body parts, the two crucial components in calculating the percentage of total body surface area (%TBSA). Asymmetric attention mechanism is introduced, allowing attention guidance from the body part segmentation task to the burn region segmentation task. A user-friendly mobile application is developed to facilitate a fast assessment of burn severity at clinical settings. The proposed framework was evaluated on a dataset comprising 1340 color burn wound images captured on-site at clinical settings. The average Dice coefficients for burn depth segmentation and body part segmentation are 85.12 % and 85.36 %, respectively. The R<sup>2</sup> for %TBSA assessment is 0.9136. The source codes for the joint-task framework and the application are released on Github (https://github.com/xjtu-mia/BurnAnalysis). The proposed platform holds the potential to be widely used at clinical settings to facilitate a fast and precise burn assessment.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"182 ","pages":"109171"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On-site burn severity assessment using smartphone-captured color burn wound images.\",\"authors\":\"Xiayu Xu, Qilong Bu, Jingmeng Xie, Hang Li, Feng Xu, Jing Li\",\"doi\":\"10.1016/j.compbiomed.2024.109171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate assessment of burn severity is crucial for the management of burn injuries. Currently, clinicians mainly rely on visual inspection to assess burns, characterized by notable inter-observer discrepancies. In this study, we introduce an innovative analysis platform using color burn wound images for automatic burn severity assessment. To do this, we propose a novel joint-task deep learning model, which is capable of simultaneously segmenting both burn regions and body parts, the two crucial components in calculating the percentage of total body surface area (%TBSA). Asymmetric attention mechanism is introduced, allowing attention guidance from the body part segmentation task to the burn region segmentation task. A user-friendly mobile application is developed to facilitate a fast assessment of burn severity at clinical settings. The proposed framework was evaluated on a dataset comprising 1340 color burn wound images captured on-site at clinical settings. The average Dice coefficients for burn depth segmentation and body part segmentation are 85.12 % and 85.36 %, respectively. The R<sup>2</sup> for %TBSA assessment is 0.9136. The source codes for the joint-task framework and the application are released on Github (https://github.com/xjtu-mia/BurnAnalysis). The proposed platform holds the potential to be widely used at clinical settings to facilitate a fast and precise burn assessment.</p>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"182 \",\"pages\":\"109171\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiomed.2024.109171\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2024.109171","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
On-site burn severity assessment using smartphone-captured color burn wound images.
Accurate assessment of burn severity is crucial for the management of burn injuries. Currently, clinicians mainly rely on visual inspection to assess burns, characterized by notable inter-observer discrepancies. In this study, we introduce an innovative analysis platform using color burn wound images for automatic burn severity assessment. To do this, we propose a novel joint-task deep learning model, which is capable of simultaneously segmenting both burn regions and body parts, the two crucial components in calculating the percentage of total body surface area (%TBSA). Asymmetric attention mechanism is introduced, allowing attention guidance from the body part segmentation task to the burn region segmentation task. A user-friendly mobile application is developed to facilitate a fast assessment of burn severity at clinical settings. The proposed framework was evaluated on a dataset comprising 1340 color burn wound images captured on-site at clinical settings. The average Dice coefficients for burn depth segmentation and body part segmentation are 85.12 % and 85.36 %, respectively. The R2 for %TBSA assessment is 0.9136. The source codes for the joint-task framework and the application are released on Github (https://github.com/xjtu-mia/BurnAnalysis). The proposed platform holds the potential to be widely used at clinical settings to facilitate a fast and precise burn assessment.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.