{"title":"彩色噪声驱动的具有记忆的随机微分方程的动力学。","authors":"Ruonan Liu, Tomás Caraballo","doi":"10.1063/5.0223756","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we will show two approaches to analyze the dynamics of a stochastic partial differential equation (PDE) with long time memory, which does not generate a random dynamical system and, consequently, the general theory of random attractors is not applicable. On the one hand, we first approximate the stochastic PDEs by a random one via replacing the white noise by a colored one. The resulting random equation does generate a random dynamical system which possesses a random attractor depending on the covariance parameter of the colored noise. On the other hand, we define a mean random dynamical system via the solution operator and prove the existence and uniqueness of weak pullback mean random attractors when the problem is driven by a more general white noise.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of stochastic differential equations with memory driven by colored noise.\",\"authors\":\"Ruonan Liu, Tomás Caraballo\",\"doi\":\"10.1063/5.0223756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we will show two approaches to analyze the dynamics of a stochastic partial differential equation (PDE) with long time memory, which does not generate a random dynamical system and, consequently, the general theory of random attractors is not applicable. On the one hand, we first approximate the stochastic PDEs by a random one via replacing the white noise by a colored one. The resulting random equation does generate a random dynamical system which possesses a random attractor depending on the covariance parameter of the colored noise. On the other hand, we define a mean random dynamical system via the solution operator and prove the existence and uniqueness of weak pullback mean random attractors when the problem is driven by a more general white noise.</p>\",\"PeriodicalId\":9974,\"journal\":{\"name\":\"Chaos\",\"volume\":\"34 10\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0223756\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0223756","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Dynamics of stochastic differential equations with memory driven by colored noise.
In this paper, we will show two approaches to analyze the dynamics of a stochastic partial differential equation (PDE) with long time memory, which does not generate a random dynamical system and, consequently, the general theory of random attractors is not applicable. On the one hand, we first approximate the stochastic PDEs by a random one via replacing the white noise by a colored one. The resulting random equation does generate a random dynamical system which possesses a random attractor depending on the covariance parameter of the colored noise. On the other hand, we define a mean random dynamical system via the solution operator and prove the existence and uniqueness of weak pullback mean random attractors when the problem is driven by a more general white noise.
期刊介绍:
Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.