{"title":"了解银单晶表面铜晶格调谐的电化学二氧化碳还原反应机理。","authors":"Tao Zheng, Xia-Guang Zhang","doi":"10.1002/cphc.202400757","DOIUrl":null,"url":null,"abstract":"<p><p>Intermolecular interactions and adsorbate coverage on a metal electrode's surface/interface play an important role in CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). Herein, the activity and selectivity of CO<sub>2</sub>RR on bimetallic electrode, where a full monoatomic Cu layer covers on Ag surface (Cu<sub>ML</sub>/Ag) are investigated by using density functional theory calculations. The surface geometric and electronic structure results indicate that there is high electrocatalytic activity for CO<sub>2</sub>RR on the Cu<sub>ML</sub>/Ag electrode. Specifically, the Cu<sub>ML</sub>/Ag surface can accelerate the H<sub>2</sub>O and CO<sub>2</sub> adsorption and hydrogenation while lowering the reaction energy of the rate-determining step. The structure parameters of chemisorbed CO<sub>2</sub> with and without H<sub>2</sub>O demonstrate that activated H<sub>2</sub>O not only promotes the C-O dissociation but also provides the protons required for CO<sub>2</sub>RR on the Cu<sub>ML</sub>/Ag electrode surface. Furthermore, the various reaction mechanism diagrams indicate that the Cu<sub>ML</sub>/Ag electrode has high selectivity for CO<sub>2</sub>RR, and the efficiency of products can be regulated by modulating the reaction's electric potential.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202400757"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Electrochemical Carbon Dioxide Reduction Reaction Mechanism of Lattice Tuning of Copper by Silver Single-Crystal Surface.\",\"authors\":\"Tao Zheng, Xia-Guang Zhang\",\"doi\":\"10.1002/cphc.202400757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intermolecular interactions and adsorbate coverage on a metal electrode's surface/interface play an important role in CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). Herein, the activity and selectivity of CO<sub>2</sub>RR on bimetallic electrode, where a full monoatomic Cu layer covers on Ag surface (Cu<sub>ML</sub>/Ag) are investigated by using density functional theory calculations. The surface geometric and electronic structure results indicate that there is high electrocatalytic activity for CO<sub>2</sub>RR on the Cu<sub>ML</sub>/Ag electrode. Specifically, the Cu<sub>ML</sub>/Ag surface can accelerate the H<sub>2</sub>O and CO<sub>2</sub> adsorption and hydrogenation while lowering the reaction energy of the rate-determining step. The structure parameters of chemisorbed CO<sub>2</sub> with and without H<sub>2</sub>O demonstrate that activated H<sub>2</sub>O not only promotes the C-O dissociation but also provides the protons required for CO<sub>2</sub>RR on the Cu<sub>ML</sub>/Ag electrode surface. Furthermore, the various reaction mechanism diagrams indicate that the Cu<sub>ML</sub>/Ag electrode has high selectivity for CO<sub>2</sub>RR, and the efficiency of products can be regulated by modulating the reaction's electric potential.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\" \",\"pages\":\"e202400757\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cphc.202400757\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202400757","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Understanding the Electrochemical Carbon Dioxide Reduction Reaction Mechanism of Lattice Tuning of Copper by Silver Single-Crystal Surface.
Intermolecular interactions and adsorbate coverage on a metal electrode's surface/interface play an important role in CO2 reduction reaction (CO2RR). Herein, the activity and selectivity of CO2RR on bimetallic electrode, where a full monoatomic Cu layer covers on Ag surface (CuML/Ag) are investigated by using density functional theory calculations. The surface geometric and electronic structure results indicate that there is high electrocatalytic activity for CO2RR on the CuML/Ag electrode. Specifically, the CuML/Ag surface can accelerate the H2O and CO2 adsorption and hydrogenation while lowering the reaction energy of the rate-determining step. The structure parameters of chemisorbed CO2 with and without H2O demonstrate that activated H2O not only promotes the C-O dissociation but also provides the protons required for CO2RR on the CuML/Ag electrode surface. Furthermore, the various reaction mechanism diagrams indicate that the CuML/Ag electrode has high selectivity for CO2RR, and the efficiency of products can be regulated by modulating the reaction's electric potential.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.