4D-XCT 监测灌注法生产的厚甲基丙烯酸酯复合材料中的空隙形成

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sarah F. Gayot, Jeroen Soete, Johan Vanhulst, Pierre Gérard, Thomas Pardoen
{"title":"4D-XCT 监测灌注法生产的厚甲基丙烯酸酯复合材料中的空隙形成","authors":"Sarah F. Gayot, Jeroen Soete, Johan Vanhulst, Pierre Gérard, Thomas Pardoen","doi":"10.1016/j.actamat.2024.120449","DOIUrl":null,"url":null,"abstract":"Void formation in fibre-reinforced polymer composites processed by liquid moulding is a persistent issue in composite research and development. Not only may several void formation mechanisms come into play, but these defects can also accumulate and grow over the course of the manufacturing process. Mitigation methods can be applied once the underlying causes of voiding are identified, which is impossible through post-mortem characterisation. Here, void formation is dynamically monitored in miniaturised glass fibre-reinforced thermoplastic polymer composite samples manufactured by vacuum infusion and in-situ polymerisation, using laboratory-based X-ray computed tomography (XCT). The method allows the characterisation of the evolution of void patterns as the resin polymerises and cools down within the fibre preform. With a time resolution of 2 minutes and a voxel size close to 20 µm, this first-of-a-kind XCT experiment provides insights into the evolution of the void volume fraction, void size and location. The root causes leading to void formation in the system of interest were successfully identified as a combination of flow-related air entrapment during preform filling and, mostly, of chemical shrinkage of the matrix upon polymerisation. Additionally, thermal shrinkage during the cooling of the preform results in a slight decrease in the final void volume fraction.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D-XCT monitoring of void formation in thick methacrylic composites produced by infusion\",\"authors\":\"Sarah F. Gayot, Jeroen Soete, Johan Vanhulst, Pierre Gérard, Thomas Pardoen\",\"doi\":\"10.1016/j.actamat.2024.120449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Void formation in fibre-reinforced polymer composites processed by liquid moulding is a persistent issue in composite research and development. Not only may several void formation mechanisms come into play, but these defects can also accumulate and grow over the course of the manufacturing process. Mitigation methods can be applied once the underlying causes of voiding are identified, which is impossible through post-mortem characterisation. Here, void formation is dynamically monitored in miniaturised glass fibre-reinforced thermoplastic polymer composite samples manufactured by vacuum infusion and in-situ polymerisation, using laboratory-based X-ray computed tomography (XCT). The method allows the characterisation of the evolution of void patterns as the resin polymerises and cools down within the fibre preform. With a time resolution of 2 minutes and a voxel size close to 20 µm, this first-of-a-kind XCT experiment provides insights into the evolution of the void volume fraction, void size and location. The root causes leading to void formation in the system of interest were successfully identified as a combination of flow-related air entrapment during preform filling and, mostly, of chemical shrinkage of the matrix upon polymerisation. Additionally, thermal shrinkage during the cooling of the preform results in a slight decrease in the final void volume fraction.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2024.120449\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120449","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纤维增强聚合物复合材料在液态模塑加工过程中形成的空洞是复合材料研发中的一个老大难问题。不仅可能有多种空洞形成机制,而且这些缺陷还可能在制造过程中不断累积和扩大。一旦确定了空洞形成的根本原因,就可以采用缓解方法,但这是无法通过死后表征来实现的。在此,我们利用实验室 X 射线计算机断层扫描 (XCT) 技术,对通过真空灌注和原位聚合制造的微型玻璃纤维增强热塑性聚合物复合材料样品的空洞形成进行动态监测。这种方法可以描述树脂在纤维预型件内聚合和冷却时空隙形态的演变。这种首创的 XCT 实验时间分辨率为 2 分钟,体素尺寸接近 20 微米,可以深入了解空隙体积分数、空隙尺寸和位置的演变情况。成功确定了导致相关系统中空隙形成的根本原因,包括预成型填充过程中与流动相关的空气夹带,以及聚合过程中基体的化学收缩。此外,预成型冷却过程中的热收缩也会导致最终空隙体积分数略有下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

4D-XCT monitoring of void formation in thick methacrylic composites produced by infusion

4D-XCT monitoring of void formation in thick methacrylic composites produced by infusion
Void formation in fibre-reinforced polymer composites processed by liquid moulding is a persistent issue in composite research and development. Not only may several void formation mechanisms come into play, but these defects can also accumulate and grow over the course of the manufacturing process. Mitigation methods can be applied once the underlying causes of voiding are identified, which is impossible through post-mortem characterisation. Here, void formation is dynamically monitored in miniaturised glass fibre-reinforced thermoplastic polymer composite samples manufactured by vacuum infusion and in-situ polymerisation, using laboratory-based X-ray computed tomography (XCT). The method allows the characterisation of the evolution of void patterns as the resin polymerises and cools down within the fibre preform. With a time resolution of 2 minutes and a voxel size close to 20 µm, this first-of-a-kind XCT experiment provides insights into the evolution of the void volume fraction, void size and location. The root causes leading to void formation in the system of interest were successfully identified as a combination of flow-related air entrapment during preform filling and, mostly, of chemical shrinkage of the matrix upon polymerisation. Additionally, thermal shrinkage during the cooling of the preform results in a slight decrease in the final void volume fraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信