基于机器视觉的大坝水下裂缝智能分割方法,采用蜂群优化算法和深度学习技术

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Yantao Zhu, Xinqiang Niu, Jinzhang Tian
{"title":"基于机器视觉的大坝水下裂缝智能分割方法,采用蜂群优化算法和深度学习技术","authors":"Yantao Zhu, Xinqiang Niu, Jinzhang Tian","doi":"10.1111/mice.13343","DOIUrl":null,"url":null,"abstract":"Ensuring the safety of water networks is a research hotspot in the current water conservancy industry, and dams are an important part. However, over time, the dam is prone to varying degrees of aging and disease, most of which are structural cracks. If they cannot be discovered and repaired in time, the normal operation of the dam will be affected, and even catastrophic accidents such as dam failure will occur. However, complex backgrounds and blurred images can easily lead to misjudgments by machine vision detection models, and high-efficiency and accurate detection and evaluation technology are urgently needed. This paper combines the deep semantic segmentation network and the model hyperparameters optimization algorithm to propose a data-intelligent perception method of dam underwater cracks driven by knowledge coupling. Taking the underwater detection of a concrete face rockfill dam as an example, the effectiveness of the model is verified by using the underwater vehicle as the carrier. Experimental results indicate that the developed method achieves an intersection-union ratio of 0.9301, a precision rate of 0.9678, a precision rate of 0.9472, and a recall rate of 0.9577 in the test set. This shows that the constructed method has a high crack fine detection performance. In addition, the developed method has better segmentation performance in different complex underwater crack scenes, which further illustrates the high performance of the developed method.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"10 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A machine vision-based intelligent segmentation method for dam underwater cracks using swarm optimization algorithm and deep learning\",\"authors\":\"Yantao Zhu, Xinqiang Niu, Jinzhang Tian\",\"doi\":\"10.1111/mice.13343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensuring the safety of water networks is a research hotspot in the current water conservancy industry, and dams are an important part. However, over time, the dam is prone to varying degrees of aging and disease, most of which are structural cracks. If they cannot be discovered and repaired in time, the normal operation of the dam will be affected, and even catastrophic accidents such as dam failure will occur. However, complex backgrounds and blurred images can easily lead to misjudgments by machine vision detection models, and high-efficiency and accurate detection and evaluation technology are urgently needed. This paper combines the deep semantic segmentation network and the model hyperparameters optimization algorithm to propose a data-intelligent perception method of dam underwater cracks driven by knowledge coupling. Taking the underwater detection of a concrete face rockfill dam as an example, the effectiveness of the model is verified by using the underwater vehicle as the carrier. Experimental results indicate that the developed method achieves an intersection-union ratio of 0.9301, a precision rate of 0.9678, a precision rate of 0.9472, and a recall rate of 0.9577 in the test set. This shows that the constructed method has a high crack fine detection performance. In addition, the developed method has better segmentation performance in different complex underwater crack scenes, which further illustrates the high performance of the developed method.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13343\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13343","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

确保水网安全是当前水利行业的研究热点,大坝是其中的重要组成部分。然而,随着时间的推移,大坝容易出现不同程度的老化和病害,其中大部分是结构性裂缝。如果不能及时发现和修复,就会影响大坝的正常运行,甚至发生溃坝等灾难性事故。然而,复杂的背景和模糊的图像很容易导致机器视觉检测模型的误判,迫切需要高效、准确的检测和评估技术。本文结合深度语义分割网络和模型超参数优化算法,提出了一种知识耦合驱动的大坝水下裂缝数据智能感知方法。以混凝土面堆石坝水下检测为例,以水下航行器为载体验证了模型的有效性。实验结果表明,所建立的方法在测试集中的交集-联合比为 0.9301,精确率为 0.9678,精确率为 0.9472,召回率为 0.9577。这表明所构建的方法具有较高的裂缝精细检测性能。此外,所开发的方法在不同的复杂水下裂缝场景中都有较好的分割性能,这进一步说明了所开发方法的高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A machine vision-based intelligent segmentation method for dam underwater cracks using swarm optimization algorithm and deep learning
Ensuring the safety of water networks is a research hotspot in the current water conservancy industry, and dams are an important part. However, over time, the dam is prone to varying degrees of aging and disease, most of which are structural cracks. If they cannot be discovered and repaired in time, the normal operation of the dam will be affected, and even catastrophic accidents such as dam failure will occur. However, complex backgrounds and blurred images can easily lead to misjudgments by machine vision detection models, and high-efficiency and accurate detection and evaluation technology are urgently needed. This paper combines the deep semantic segmentation network and the model hyperparameters optimization algorithm to propose a data-intelligent perception method of dam underwater cracks driven by knowledge coupling. Taking the underwater detection of a concrete face rockfill dam as an example, the effectiveness of the model is verified by using the underwater vehicle as the carrier. Experimental results indicate that the developed method achieves an intersection-union ratio of 0.9301, a precision rate of 0.9678, a precision rate of 0.9472, and a recall rate of 0.9577 in the test set. This shows that the constructed method has a high crack fine detection performance. In addition, the developed method has better segmentation performance in different complex underwater crack scenes, which further illustrates the high performance of the developed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信