Claire E. Bulgin , Ross I. Maidment , Darren Ghent , Christopher J. Merchant
{"title":"陆地表面温度(LST)气候数据记录(CDR)云层探测方法的稳定性","authors":"Claire E. Bulgin , Ross I. Maidment , Darren Ghent , Christopher J. Merchant","doi":"10.1016/j.rse.2024.114440","DOIUrl":null,"url":null,"abstract":"<div><div>The stability of a climate data record (CDR) is essential for evaluating long-term trends in surface temperature using remote sensing products. In the case of a satellite-derived CDR of land surface temperature (LST), this includes the stability of processing steps prior to the estimation of the target climate variable. Instability in the masking of cloud-affected observations can result in non-geophysical trends in a LST CDR. This paper provides an assessment of cloud detection performance stability over a 25-year LST CDR generated using data from the second Along-Track Scanning Radiometer (ATSR-2), the Advanced Along-Track Scanning Radiometer (AATSR), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Sea and Land Surface Temperature Radiometer (SLSTR). We evaluate three cloud detection methodologies, one fully Bayesian, one naïve probabilistic and the operational threshold-based cloud mask provided with each sensor, at four in-situ ceilometer sites. Of the 12 algorithm-site combinations assessed, only two (17 %) were stable across the full timeseries with respect to both cloud contamination and missed clear-sky observations. Five (42 %) were stable with respect to missed clear-sky observations only. The associated impacts on LST trends in the CDR could be as large as (+/−)0.73 K per decade (0.43 K per decade above the target stability), which means that attention needs to be paid to this aspect of stability in order to understand uncertainty in long-term observed trends. Given that cloud detection stability has not to our knowledge been previously assessed for any target climate variable, this conclusion may apply more broadly to other satellite-derived CDRs.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114440"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of cloud detection methods for Land Surface Temperature (LST) Climate Data Records (CDRs)\",\"authors\":\"Claire E. Bulgin , Ross I. Maidment , Darren Ghent , Christopher J. Merchant\",\"doi\":\"10.1016/j.rse.2024.114440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The stability of a climate data record (CDR) is essential for evaluating long-term trends in surface temperature using remote sensing products. In the case of a satellite-derived CDR of land surface temperature (LST), this includes the stability of processing steps prior to the estimation of the target climate variable. Instability in the masking of cloud-affected observations can result in non-geophysical trends in a LST CDR. This paper provides an assessment of cloud detection performance stability over a 25-year LST CDR generated using data from the second Along-Track Scanning Radiometer (ATSR-2), the Advanced Along-Track Scanning Radiometer (AATSR), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Sea and Land Surface Temperature Radiometer (SLSTR). We evaluate three cloud detection methodologies, one fully Bayesian, one naïve probabilistic and the operational threshold-based cloud mask provided with each sensor, at four in-situ ceilometer sites. Of the 12 algorithm-site combinations assessed, only two (17 %) were stable across the full timeseries with respect to both cloud contamination and missed clear-sky observations. Five (42 %) were stable with respect to missed clear-sky observations only. The associated impacts on LST trends in the CDR could be as large as (+/−)0.73 K per decade (0.43 K per decade above the target stability), which means that attention needs to be paid to this aspect of stability in order to understand uncertainty in long-term observed trends. Given that cloud detection stability has not to our knowledge been previously assessed for any target climate variable, this conclusion may apply more broadly to other satellite-derived CDRs.</div></div>\",\"PeriodicalId\":417,\"journal\":{\"name\":\"Remote Sensing of Environment\",\"volume\":\"315 \",\"pages\":\"Article 114440\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing of Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0034425724004668\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004668","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Stability of cloud detection methods for Land Surface Temperature (LST) Climate Data Records (CDRs)
The stability of a climate data record (CDR) is essential for evaluating long-term trends in surface temperature using remote sensing products. In the case of a satellite-derived CDR of land surface temperature (LST), this includes the stability of processing steps prior to the estimation of the target climate variable. Instability in the masking of cloud-affected observations can result in non-geophysical trends in a LST CDR. This paper provides an assessment of cloud detection performance stability over a 25-year LST CDR generated using data from the second Along-Track Scanning Radiometer (ATSR-2), the Advanced Along-Track Scanning Radiometer (AATSR), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Sea and Land Surface Temperature Radiometer (SLSTR). We evaluate three cloud detection methodologies, one fully Bayesian, one naïve probabilistic and the operational threshold-based cloud mask provided with each sensor, at four in-situ ceilometer sites. Of the 12 algorithm-site combinations assessed, only two (17 %) were stable across the full timeseries with respect to both cloud contamination and missed clear-sky observations. Five (42 %) were stable with respect to missed clear-sky observations only. The associated impacts on LST trends in the CDR could be as large as (+/−)0.73 K per decade (0.43 K per decade above the target stability), which means that attention needs to be paid to this aspect of stability in order to understand uncertainty in long-term observed trends. Given that cloud detection stability has not to our knowledge been previously assessed for any target climate variable, this conclusion may apply more broadly to other satellite-derived CDRs.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.